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Abstract
Our objective is to determine the evolutionarily stable strategy [13] that is

supposed to drive the behavior of foragers competing for a common patchily
distributed resource [15]. Compared to [17], the innovation lies in the fact that
random arrival times are allowed.

In this second part, we add interference to the model: it implies that a “pas-
sive” Charnov-like strategy can no longer be optimal.Adynamic programming
approach leads to a sequence of wars of attrition [13] with random end times.
This game is solved in Appendix A. Under some conditions that prevail in our
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model, the solution is independent of the probability law of the horizon. As a
consequence, the solution of the asynchronous foraging problem investigated
here, expressed as a closed loop strategy on the number of foragers, is identical
to that of the synchronous problem [17].

Finally, we discuss the biological implications such as a possible connection
with the genetic variability in the susceptibility to interference observed in [22].

1 Introduction

As the main concepts and notation are introduced in a companion paper [9], we
just summarize them hereafter.

“Nothing in biology makes sense except in the light of evolution”.1 In this respect,
behavioral ecology interprets animal behavior through an evolutionary approach,
via estimating its capacity to get through the natural selection process, and to max-
imize Darwinian fitness [12]—a notion analogous to that of “utility” in economics.
Typically, in foraging theory or the art of gathering resources in the environment,
fitness is related to the quantity of resource gathered. In many cases, the resource
is patchily distributed and the utility function on each patch is strictly increasing,
concave and bounded with respect to time. As the intake rate decreases with the
quantity of resource available on the patch, it is likely advantageous to leave a
patch not yet exhausted in order to find a new one, in spite of an uncertain travel
time. Charnov’s marginal value theorem reveals that the optimal giving-up time
is when the intake rate is equal to the optimal long-term mean rate γ ∗—which,
if achieved, gives the best fitness a forager can expect in its environment. This
famous theoretical model is actually applied to a lone forager that has a monopoly
on resources it finds.

Naturally, the question arises of whether this result holds for foragers compet-
ing for a common patchily distributed resource, i.e., whether this is an evolution-
arily stable strategy [13]. The authors of [17] assume that somehow n foragers
have reached a patch simultaneously, and they investigate the evolutionarily sta-
ble giving-up strategy. Our innovation lies in the fact that an a priori unlimited
number of foragers reaching a patch at random arrival times is allowed. We shall
refer to these situations as, respectively, synchronous and asynchronous foraging.

In the first part [9], we investigated the scramble competition case where the
only competition between foragers is in sharing a common resource: Charnov’s
patch-leaving rule remains qualitatively unchanged. In this second part, we extend
that model to take into account actual interference [18], i.e., the decline of the
intake rate due to competition. The complete solution of the new game is obtained
in Section 2, and makes use of the solution of a war of attrition [13] with random
end time, solved in a more general setup in Appendix A.

We freely refer to the concepts of evolutionarily stable strategy (ESS) and
replicator dynamics provided by evolutionary game theory. Appendix B gathers

1Theodosius Dobzhansky, geneticist, 1900–1975.
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some basic facts concerning these topics and their relationship to classical game
theory.

2 Interference Competition

In this second part, we assume that beyond sharing the same resource, competition
on a patch yields a decline of the intake rate of all the contestants [18]. This
effect might even increase with the scarcity of the resource. As a consequence, the
departure of a forager surely causes an abrupt rise of the intake rate. It implies that
the latter does not only depend on the ratio of available resource but also on the
current number of foragers present on the patch. A passive Charnov-like strategy,
where the foragers only monitor their own intake rate to decide whether to stay or
leave, should no longer be optimal.

Indeed, previous papers [17] reveal that synchronous foragers should trig-
ger a war of attrition, i.e., the foragers should leave at random—but optimally
distributed—times, except the lucky one which remains alone on the patch,
expected to stay to exhaust the patch up to its profitability threshold.

The question arises as to whether this result holds for asynchronous foragers or
to what extent. The doubt mainly arises from the fact that unexpected newcomers
can now enter the game.

2.1 Model

Assume that n ∈ N identical foragers are on the same patch. Let the sequence of
forager arrival times be σ = {σ1, σ2, . . . , σn} and i ∈ {1, 2, . . . , n}. We let

• q ∈ R
+ be the quality of the patch, i.e., the potential fitness it initially offers,

• p ∈ R
+ be the current state of the patch, i.e., the amount of fitness remaining,

• ρ = p/q ∈ �1 = [0, 1] be the fitness remaining on the patch relative to its
quality.

Let m ∈ R
+ be a parameter which quantifies interference intensity among

foragers [18]; m = 0 corresponds to scramble competition. Let r(ρ, n,m) be a
known function such that

• ∀ n, m, ρ �→ r(ρ, n,m) is continuous, strictly increasing and concave,
• ∀ ρ, m, n �→ r(ρ, n,m) is strictly decreasing if m > 0 and invariant

otherwise,
• ∀ ρ, n, m �→ r(ρ, n,m) is strictly decreasing if n > 1 and invariant

otherwise.

Our basic assumption is that the fitness gathered by forager i is given by the
differential equation

∀i, ḟi = ḟ = r(ρ, n,m), fi(σi) = 0,

and
ṗ = qρ̇ = −nḟ , ρ(0) = ρ0.
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Let the fitness accumulated by forager i after a residence time τi befi(τi, τ−i , σi)
where τ−i stands for the set {τj }, j �= i, which surely impacts fi .

Following [12, 17], we use an equivalent criterion to that of [9] which is the
effective fitness compared to the optimal (Nash) average one for a given resi-
dence time:

Ji(τi, τ−i , σi) = fi(τi, τ−i , σi)− (θ̄ + τi)γ
∗,

where θ̄ is the mean travel time. Note that by definition γ ∗ is such that the maximum
expected J is zero.

2.2 The Game

A priori, we cannot exhibit any Nash equilibrium in pure strategies; hence the need
to deal with mixed strategies, say Pi , i ∈ {1, 2, . . . , n} for n foragers. We shall use
the subscript −i to mean all players except player i.

So our criterion becomes the following generating function:

Gi (Pi, P−i , σi) = E
Pi ,P−i
τi ,τ−i Ji(τi, τ−i , σi). (1)

As a consequence of the above definition of γ ∗,

EGi (P ∗
i , P

∗
−i , σi) = 0.

Let us define a stage as a stochastic period during which the number of foragers
n remains constant on the patch; note that in such a stage the intake rate is only
affected by ρ. Let the superscript k ∈ N denote the number of the stage; k = 0
indicates the stage at which the reference forager started the game. As there exists
a profitability threshold ρ∗, the patch can not be indefinitely exploited; the total
number of stages K ∈ N and the total number of players N ∈ N are thus finite,
but a priori unknown.

We define the state at the beginning of stage k as

χk =
(
ρk

nk

)
∈ �1 × N.

For each stage, each player commits to a persistence time xki ∈ R
+; i.e., if the

stage is not yet finished at that time it quits the game and so its own horizon is
Ki = k. We find it convenient to let the exceptional—zero-measure—case, where
all xi are equal, end the current stage: it means that all players are invited to play
again in order to make the patch surely exhausted once visited.

Let us introduce the stochastic variable:

αk =



1 if an arrival ended stage k
−1 if a departure ended stage k
0 otherwise

.
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It depends on the strategies of the players, but if the arrival times are Markovian,
as we shall assume, as well as the strategies, it is a Markov process itself.

Let δk be the duration of stage k and

κki =
{

0 if xki = δk and max xk−i > xki
1 otherwise

,

i.e., κki = 1 if player i remains in the patch beyond the current stage. This yields
the following dynamics:{

ρk+1 = ρk −�ρ(ρ
k, nk, δk) =: �ρ(ρ

k, nk, δk)

nk+1 = nk + αk
,

with �ρ(ρ, n, δ) a known function that can be derived from the dynamic model
of Section 2.1, and which enjoys the following properties:

• ∀ ρ, n,�ρ(ρ, n, 0) = 0,
• ∀ ρ, n, δ �→ �ρ(ρ, n, δ) is increasing and concave,
• ∀ ρ, n, limδ→∞�ρ(ρ, n, δ) = ρ.

Each criterion can be expressed as

Gi = E

{
Ki∑
k=0

L(χk, δk)
}
,

with
L(χ, δ) = L(ρ, n, δ) = q

n
�ρ(ρ, n, δ)− γ ∗δ.

Previous assumptions made on �ρ yield

• ∀ ρ, n,L(ρ, n, 0) = 0,
• ∀ ρ, n, δ �→ L(ρ, n, δ) is concave,
• ∀ ρ, n, limδ→∞ L(ρ, n, δ) = −∞.

To solve the corresponding dynamic game problem via dynamic programming,
we introduce the function V ki (χ)which is the optimal expected total future reward
for entering stage k in the state χ . We get the following functional equation of
dynamic programming:

V ki (χ
k) = E

∗ [L(χk, δk)+ κki V
k+1
i (χk+1)

] ∀k ≤ Ki, (2)

where E
∗ means that we look for a set of strategies which yield a Nash equilibrium

at each stage. As the game is surely stationary, Vi does not depend on the stage
number k and (2) becomes the following implicit equation:

Vi(ρ, n) = E
∗ [L(ρ, n, δ)+ κiVi(�ρ(ρ, n, δ), n+ α)

] ∀ρ > ρ∗.
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As a consequence, it suffices to solve the game restricted to one stage to obtain
the Nash-optimal strategy in the closed loop. Furthermore, this is surely a war of
attrition with a stochastic end time as defined in Appendix A. Indeed the one-stage
game can be stated as follows. Let Vi(�ρ(ρ, n, δ), n) =: Vi (δ, n) and thus, the
game has a utility function

Ui(xi, x−i , δ) = L(n, δ)+




0 if xi = δ and max x−i > xi
Vi (δ, n) if xi = δ and max x−i = xi
Vi (δ, n+ 1) if δ < min{xi, x−i}
Vi (δ, n− 1) otherwise

.

Let x̌ be such that �ρ(ρ, n, x̌) := ρ∗; it is the time after which a forager, even
alone, has no incentive to stay on the patch, i.e., Vi (x̌, ·) = 0.

Let then x̂ = arg maxx L(n, x); both x̂ and x̌ depend on ρ and n.
As a consequence, ∀n,∀x > x̂,L′(n, x) < 0. Moreover, if there is no departure,

the L function of the next stage is still decreasing. Thus its x̂ is zero, and according
to Appendix A, its value is zero. Hence if δ ∈ [x̂, x̌],Vi (δ, n) = Vi (δ, n+ 1) = 0.

We show in Appendix A that the value of the game is, as in the classical war of
attrition, equal to L(x̂, n). As a consequence,

Vi (x, n− 1) = max
y

L(�ρ(ρ, n, x), n− 1, y) =: V(x, n).

We therefore obtain the following result.

Theorem 2.1. The Nash equilibrium of the game (1) is

P ∗(x, n) =



0 ∀x < x̂

1 − e− 1
n−1

∫ x
x̂ h(y,n)dy ∀x ∈ [x̂, x̌]

1 ∀x ≥ x̌

,

with

h(x, n) = −L′(x, n)
V(x, n)

.

Hence the solution of the asynchronous foraging problem investigated here,
expressed as a closed loop strategy on the number of foragers, is identical to the
synchronous problem of [17].

3 Concluding Remarks

3.1 How Does a War of Attrition Influence the Residence Time?

A question that is not addressed by the model is: Does interference, thus a war of
attrition, imply that multiple foragers should stay longer on a patch than a lone
forager? We cannot answer in a general way.
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It is an established fact [17] that a war of attrition causes the forager to stay
longer than the “Charnov time.” Yet, this Charnov time itself, here x̂, depends in
a complex fashion on the detailed interference model.

In this respect, the article [7] does not invalidate the theoretical model; on
the contrary, this paper seems to corroborate the model of [17], as the larger the
number of animals on the patch, the larger is their tendency to leave. First, part of
the contestants leave the patch almost immediately; this can be connected to the
“n−K” of [17]. Then the remaining contestants leave sequentially, as in [17].

3.2 On a Possible Connection with Population Genetics

Up to now, we have focused on mixed strategies in their classical sense: a random
strategy x distributed according to a probability density function p(x). Let p∗(x)
equalize the opponent’s payoff on its spectrum as in a solution of a Nash game.

Note that in a war of attrition, the value of the game is the reward which would
have been earned without entering the game. Nevertheless, the Nash solution
requires one to play; the question that arises then is: Why should I play if my
expected gain is not greater than my guaranteed value? In the context of evolu-
tionary game theory, the answer makes sense: “to prevent the proliferation of any
mutant that would alternatively stay longer on the patch.” That is, the mutant is
equivalent to a cheater in a population commonly and conventionally adopting
a simple Charnov-like strategy: by breaking off the convention, it would obtain
more fitness and would consequently invade. Note that, in return, adopting such
an ESS has no extra cost as the value of the game remains the same.

Evolutionary game theory provides another viewpoint to implement mixed
strategies. Instead of considering a monomorphic population playing a common
random strategy, let us now consider a polymorphic population in which pure
strategies are distributed homogeneously according to p∗ (see Appendix B). Since
p∗ is equalizing, all the individuals of the population can expect the same fitness.

In a population involved in “war of attrition” contests, it simply means that
distributing a deterministic persistence time to each individual according to p∗ is
evolutionarily stable. In other words, a variability in terms of individuals’ ability
to sustain interference would be expected among the population. Indeed, in this
model, interference is taken as a perturbation, not as a decision variable like in a
hawk-dove contest [5, 6, 13]; interference affects all the contestants equally.

Interestingly, the authors of [22] observed “the existence of a significant intra-
population genetic variability in the susceptibility of females to interference,”
acting on the “time they are willing to invest.” Moreover, there was no significant
genetic variability in terms of aggressiveness (unpublished data). Thus these intra-
specific interactions seem to be governed by a war of attrition game rather than a
hawk-dove one.

However, the connection with these emigration-threshold genotypes [15]
seems somewhat premature as the stability of the replicator dynamics [10] in a
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continuous strategy space—as is the case for a war of attrition—is still under
investigation [3, 4].
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Appendix A A War of Attrition with a Stochastic End Time

We consider the following nonzero-sum game:

• n players.
• Player i chooses xi ∈ R

+.
• ε, the end time, is a positive stochastic variable independent of player

decisions.
• The criterion of player i is as follows, where x−i stands for {xj }, j �= i:

Ui(xi, x−i , ε) =



Li(xi) if xi ≤ min{x−i , ε} and max x−i > xi
Di(xi) if xi ≤ min{x−i , ε} and max x−i = xi
Ei(ε) if ε < min{xi, x−i}
Wi(min x−i ) otherwise

.

The hypotheses are: ∀i,
• ∃ ! x̂ = arg maxx Li(x).
• Li is strictly decreasing for x > x̂.
• Wi(x) > Di(x) ≥ Ei(x) ≥ Li(x)∀x ∈ [x̂, x̌).
• either ∃ {x̌ ≥ x̂ | ∀x ≥ x̌, Li(x) = Wi(x)},
• otherwise let x̌ = ∞.

We seek a Nash equilibrium, with Pi(x) the cumulative distribution function of
player i. We claim the following.

Theorem A.1. A Nash equilibrium set of strategies must satisfy the following
properties:

• The Nash-optimal probability density function is continuous over [x̂, x̌) and
zero elsewhere but may exhibit a Dirac weight at x̌.

• Let

hi(x) = −
{

P ′
ε(x)

1 − Pε(x)

Ei(x)− Li(x)

Wi(x)− Li(x)
+ L′

i (x)

Wi(x)− Li(x)

}
,
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•
H ∗
i (x) = 1 − e− ∫ xx̂ hi (y) dy ∀x ∈ [x̂, x̌],

• and

Hi (x) :=
∏n
k=1[1 −H ∗

k (x)]
1
n−1

1 −Hi
.

• The unique Nash-optimal strategy is ∀i,

P ∗
i (x) =




0 ∀x < x̂

1 − Hi (x) ∀x ∈ [x̂, x̌)
1 ∀x ≥ x̌

.

Proof. The hypotheses made clearly show that everyone shares a common spec-
trum, i.e., mixed strategy support, [x̂, x̌]. Let now Pi ,Hi and Pε be the cumulative
distribution functions of respectively xi , min x−i and ε. The generating function
is then

Gi(x,Hi, Pε) =
∫
y∈[x̂,x̌]

∫
z∈[x̂,∞)

Ui(x, y, z)dPε(z)dHi(y),

Gi(x,Hi, Pε) =
∫
y∈[x̂,x)

[∫
z∈[x̂,y)

Ei(z)dPε(z)+
∫
z∈[y,∞)

Wi(y)dPε(z)

]
dHi(y)

+
∫
y∈[x,x̌]

[∫
z∈[x̂,x)

Ei(z)dPε(z)+
∫
z∈[x,∞)

Li(x)dPε(z)

]
dHi(y).

As the optimal strategy is equalizing on the opponents’ spectrum, in any open set
� in [x̂, x̌), one must have

∂

∂x
Gi(x,H

∗
i , Pε) = 0 ∀x ∈ �.

Differentiating Gi(x,Hi, Pε) yields

0 = [Ei(x)− Li(x)][1 −H ∗
i (x)]P ′

ε(x)

+ [1 − Pε(x)]
{
L′
i (x)[1 −H ∗

i (x)] − [Wi(x)− Li(x)]H ∗
i

′
(x)
}
.

Hence
H ∗
i (x) = 1 − e− ∫ xx̂ hi (y) dy ∀x ∈ [x̂, x̌],

with

hi(x) = −
{

P ′
ε(x)

1 − Pε(x)

Ei(x)− Li(x)

Wi(x)− Li(x)
+ L′

i (x)

Wi(x)− Li(x)

}
.

Hence the Nash-optimal strategies are given by

∀i, 1 −H ∗
i (x) =

∏
j �=i

[1 − P ∗
j (x)],

where the Hi’s are known.
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This implies ∏
i

[1 −H ∗
i (x)] =

∏
i

[1 − P ∗
i (x)]n−1.

Therefore,

P ∗
i (x) = 1 −

∏n
k=1[1 −H ∗

k (x)]
1
n−1

1 −Hi
=: 1 − Hi (x) ∀x ∈ [x̂, x̌).

Hence we have the unique Nash equilibrium such that

∀i, P ∗
i (x) =




0 ∀x < x̂

1 − Hi (x) ∀x ∈ [x̂, x̌)
1 ∀x ≥ x̌

.

An atom of probability takes place on x̌. Indeed, a Nash equilibrium requires
Gi(x,H

∗
i , Pε) = G∗

i ∀x ∈ [x̂, x̌), where G∗
i is the value of the game. Up to now,

we implicitly assumed that Hi was continuous in [x̂, x̌). Indeed, let x̃ ∈ [x̂, x̌]
and suppose that this is a point of discontinuity of amplitude j—for “jump.” Per
convention,Pi is cadlag. If x̃ < x̌, limx↓x̃ Gi(x)−Gi(x̃) = j (1−Pε(x̌))(Wi(x̌)−
Li(x̌))—if the draw is taken into account, in the case where all other foragers have
a Dirac at the same x̌, Li(x̌) is replaced by a convex combination of Li(x̌) and
Di(x̌)—therefore a Dirac is impossible for any x̃ < x̌. Moreover, if a jump occurs
in Hi at x̌, limx↑x̃ Gi(x) − Gi(x̃) = j (1 − Pε(x̌))(Li(x̌) − Di(x̌)) = 0 by the
definition of x̌. Hence a jump is possible on x̌. To conclude, it is obvious that, from
the previous hypotheses onLi , ∀x �∈ [x̂, x̌),Gi(x,H

∗
i , Pε) ≤ G∗

i , asG∗
i = Li(x̂).

Hence, if the game is symmetric,

P ∗(x) =



0 ∀x < x̂

1 − e− 1
n−1

∫ x
x̂ h(y)dy ∀x ∈ [x̂, x̌)

1 ∀x ≥ x̌

.

Note that, if ∀x ∈ [x̂, x̌], Pε(x) = 0, the above solution of the war of attrition
coincides with the classical solution [1, 2, 8]. �

Appendix B ESS and Classical Game Theory

B.1 Notation and Setup

We consider a compact metric spaceX as the space of traits or phenotypes or pure
strategies. Three cases of interest are

• X is finite (the finite case), X = {x1, x2, . . . , xn},
• X is a line segment [a, b] ⊂ R,
• X is a compact subset of R

n.

We shall use letters x, y for elements of X.
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We let�(X) denote the set of probability measures overX. In the finite case, we
shall also denote it as �n. We notice that, in the weak topology, �(X) is compact
and the mathematical expectation is continuous with respect to the probability law.
We shall use letters p, q for elements of �(X).

Apopulation of animals is characterized by the probabilityp ∈ �(X) governing
the traits of its individuals. There is no need to distinguish whether each individ-
ual acts many times, adopting a strategy in A ⊂ X with probability p(A)—the
population is then monomorphic and its members are said to use the mixed strat-
egy p—or whether each animal behaves in a fixed manner, but in a polymorphic
population, where p is the distribution of traits among the population, for any sub-
set A ⊂ X, p(A) is the fraction of the population which has its trait x in A. Then,
p also governs the probability that an animal taken randomly in the population
behaves a certain way.

We are given a generating function G : X×�(X) → R jointly continuous (in
the weak topology for its second argument). Its interpretation is that it is the fitness
gained by an individual with trait x in a population characterized by p.

A case of interest, called hereafter the linear case, is when G derives from a
functionH : X×X → R giving the benefitH(x, y) that an animal with trait x gets
when meeting an animal with trait y, according to the expected benefit for trait x:

G(x, p) =
∫
X

H(x, y) dp(y). (B.1)

ThenG and F below are linear in their second argument. But this is not necessary
for many of the results to follow.

The fitness gained by an animal using a mixed strategy q in a population char-
acterized by p is

F(q, p) =
∫
X

G(x, p) dq(x).

Note that if δx ∈ �(X) denotes the Dirac measure at x, G(x, p) = F(δx, p).
The most appealing definition of an ESS is as follows [13].

Definition B.1. The distribution p ∈ �(X) is said to be an ESS if there exists
ε0 > 0 such that for any positive ε < ε0,

∀q �= p∗, F (p, (1 − ε)p + εq) > F(q, (1 − ε)p + εq).

Using only the linearity, it coincides with the original definition of [14].

Theorem B.1. If F is linear in its second argument, Definition B.1 is equivalent
to Definition B.2 below.

Definition B.2. The distribution p ∈ �(X) is said to be an ESS if

(I) ∀q ∈ �(X), F (q, p) ≤ F(p, p),
(II) ∀q �= p, F (q, p) = F(p, p) ⇒ F(q, q) < F(p, q).
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B.2 Relation to Classical Game Theory

Consider a two-player game between, say, player 1 and player 2. Both choose their
action, say, q1 and q2, in �(X). Let their respective reward functions, that they
seek to maximize, be

J1(q1, q2) = F(q1, q2),

J2(q1, q2) = F(q2, q1).

We have the obvious proposition.

Proposition B.1.

• Condition B.2 of Definition B.2 is equivalent to the statement that (p, p) is a
Nash equilibrium of this game. For that reason, anyp satisfying that condition
is called a Nash point.

• If (p, p) is a strict Nash equilibrium, p is an ESS.

We immediately have the following, by a theorem due to Von Neumann [21,
assertion (17:D) p. 161] in the finite case, and noticed at least since the early 1950s
in the infinite case.2

Theorem B.2. Let p be an ESS, then

(I) ∀x ∈ X, G(x, p) ≤ F(p, p),
(II) let N = {x ∈ X | G(x, p) < F(p, p)}, then p(N) = 0.

A proof completely similar to —but slightly distinct from— the existence proof
of the Nash equilibrium lets one state the following result, which applies here.

Theorem B.3. LetP be a compact space, and letF : P×P → R be a continuous
function, concave in its first argument. Then there exists at least one p ∈ P

satisfying condition (I) of Definition B.2.

B.3 Further Analysis of the Linear Finite Case

B.3.1 Characterization in Terms of the Game Matrix

In the finite linear case, the problem is entirely defined by the matrix A = (aij )

with aij = H(xi, xj ), as

G(xi, p) = (Ap)i, F (q, p) = 〈q,Ap〉 = qtAp.

We rephrase Theorem B.2 in that context. To do so, introduce the notation 1l to
mean a vector—of appropriate dimension—the entries of which are all ones, and

2Von Neumann’s proof applies to zero-sum games. Its extension to a Nash equilibrium is
trivial and can be found, e.g., without claim of novelty, in [11].
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the notation for vectors u and v of same dimension u < v to mean that the vector
v − u has all its coordinates strictly positive.

We obtain the following more or less classical results.

Theorem B.4. In the finite linear case, the two conditions of Definition B.2 are
respectively equivalent to (I) and (II) below.

(I) There exists a partition X = X1 ∪ X0, |X1| = n1, |X0| = n0, such that,
reordering the elements of X in that order and partitioning R

n accordingly,
there exists a vectorp1 ∈ �n1 , a real numberα and a vectorh ∈ R

n0 such that

p =
(
p1

0

)
, Ap =

(
α1l
h

)
, h < α1l. (3)

(II) Partitioning A accordingly in

A =
(
A11 A10

A01 A00

)
,

∀q1 ∈ �n1\{p1}, 〈q1 − p1, A11(q1 − p1)〉 < 0. (4)

Note that the vectors 1l in the second and third expression of (3) do not have the
same dimension. Note also that p1 may still have some null coordinates.

Proof. For condition (I), this is just a rephrasing of Theorem B.2. Concerning
condition (II), the vectors q ∈ �(Rn) such that F(q, p) = F(p, p) are all the
vectors of the form

q =
(
q1

0

)
, q1 ∈ �n1 .

As a matter of fact, for all such vectors, 〈q,Ap〉 = α. Thus condition (I) of
Definition B.2 says that ∀q1 ∈ �n1\{p1}, 〈q1 −p1, A11q1〉 < 0. But we have seen
that 〈q1 − p1, A11p1〉 = 0. Therefore, we may subtract that quantity to get (II)
above. �

Theorem B.3 says that there always exists at least one solution of equations (3).
The question thus is to know whether that solution satisfies condition (II) of the
definition. To further discuss that question, let p2 ∈ R

n2 be the vector of the
nonzero entries of p1, so that, reordering the elements of X1 if necessary,

p1 =
(
p2

0

)
.

Let also A22 be the corresponding submatrix of A, and for i = 1, 2, define
Bi := Aii + Atii and the ni × (ni − 1)-dimensional matrices Qi obtained by
deleting one column from the symmetric projector matrix Pi := [I − (1/ni)1l1lt ].
The condition that the restriction of the quadratic form to the orthogonal subspace
to 1l be negative definite translates into the following.
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Corollary B.1.

• A necessary condition for a solution of equation (3) to be an ESS is that
Qt

2B2Q2 < 0 (negative definite).
• A sufficient condition is that Qt

1B1Q1 < 0, and a fortiori that B1 < 0.

We may note the following fact.

Proposition B.2. Matrices Bi , i = 1, 2 that satisfy the conditions of
Corollary B.1 have at most one nonnegative eigenvalue.3

Another easy corollary is that the number of ESSs is bounded by n. More
precisely, we have the following statement.

Corollary B.2. If there is an ESS in the relative interior of a face, there is no other
ESS in that face, and in this statement�n is itself an n− 1-dimensional face.—In
particular, if there is an ESS in the relative interior of �n, it is the unique ESS.

B.3.2 Stability of the Replicator Dynamics

Some authors ( [19, 20]) define an ESS—in the finite case—as a stable point p of
the replicator dynamics

q̇i = qi[G(xi, q)− F(q, q)]. (5)

Notice first that a consequence of (5) is that

qi(t) = qi(0) exp

(∫ t

0
[G(xi, q(s))− F(q(s), q(s)] ds

)

so that if all qi(0) are non-negative, this is preserved over time. Moreover, one
sees that

∑
i q̇i = ∑

i qiG(xi, q) − (
∑

i qi)F (q, q) = (1 −∑
i qi)F (q, q) = 0,

so that the hyperplane {q | ∑i qi = 1} is invariant. The conclusion of these two
remarks is the following:

Proposition B.3. Under the replicator dynamics,

• �(X) is invariant, as well as its interior,
• the faces of �(X) are invariant as well as their interiors.

It is known (see, e.g., [16] for a much more detailed analysis) that in the finite
linear case, the relationship between these two concepts is as in the next theorem.
Note that in the continuous case, the situation is far more complex and still open.
In the later case, the evolution equation in R

n is replaced by one in a measure
space, so that the definition of stability depends on the topology used—and the
Lyapunov function used here is not continuous in the natural weak topology.

3Some authors have mistakenly replaced at most one by exactly one.
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Theorem B.5. In the finite linear case, every asymptotically stable point of (5)
is a Nash point. Every ESS is a locally4 asymptotically stable point of (5), and
its attraction basin contains the relative interior of the lowest dimensional face of
�(X) it lies on.

Two particular cases of this theorem are as follows.

Corollary B.3. In the finite linear case:

• If an ESS is an interior point of �(X) it is globally stable in the interior
of �(X).

• Every pure strategy, whether an ESS or not, is a rest point of (5). The above
theorem implies nothing more for a pure ESS.

Proof of the theorem. To prove the necessity, assume p is not a Nash point, so
that there is an index k such that pk = 0, but G(xk, p) > F(p, p). Take an initial
q with qk > 0. Then it is impossible that q(t) → p, as this would require that
qk(t) → 0, and hence that∫ t

0
[G(xk, q(s))− F(q(s), q(s))] ds → −∞,

while in a neighborhood of p the integrand would be positive.
For the sufficiency, restrict the attention to the subspace R

n2 of Corollary B.1,
where all coordinates of p are strictly positive, and further to � := �n2 . And
consider the Lyapunov function

V (q) =
∑
i

pi ln
pi

qi
.

It is zero at p. It can be written V (q) −∑
i pi ln(qi/pi), and using the fact that

ln x < x − 1 as soon as x �= 0, V (q) > −∑i pi(qi/pi − 1) = 0 as soon as
D � q �= p. Thus its restriction to � is indeed a valid Lyapunov function. And
trivially, on a trajectory,

dV (q(t))

dt
= −

n2∑
i=1

pi[G(xi, q)− F(q, q)] − F(p, q)+ F(q, q)

which is by hypothesis negative on �n2 . �

As a matter of fact, one can prove more, using the following fact, the proof of
which (based upon compactness) we omit.

Definition B.3. A strategy p ∈ �n is called locally superior if there exists a
neighborhood N of p in�n such that, for any q ∈ N , q �= p, F(q, q) < F(p, q).

4Relative to the face we are referring to.
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Theorem B.6. In the finite linear case, p is an ESS if and only if it is locally
superior.

Corollary B.4. In the finite linear case, the basin of attraction of an ESS contains
a neighborhood in�n of the relative interior of the lowest dimensional face of�n

on which that ESS lies.
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