13 statistical Tools to Improve the
Quality of Experiments and Data Analysis
for Assessing Non-target Effects

Thomas S. Hoffmeister,! Dirk Babendreier? and Eric Wajnberg?3
1institute of Ecology and Evolutionary Biology, University of Bremen, Leobener Str. NW2,
D-28359 Bremen, Germany (email: hoffmeister @ uni-bremen.de; fax number:
+49-421-218-4504), 2Agroscope FAL Reckenholz, Reckenholzstr. 191, 8046 Ziirich,
Switzerland (email: dirk.babendreier @fal.admin.ch; fax number: +41-44-377-7201),
3INRA, 400 Route des Chappes, BP 167, 06903 Sophia-Antipolis Cedex, France
(email: wajnberg @antibes.inra.fr; fax number: +33-4-92-38-6557)

Abstract

When testing non-target effects of biological control agents, it is essential that conclusions
can be drawn with high precision and confidence. However, testing non-target effects
confronts the experimenter with a number of difficulties. First of all, biologically positive
cases of not finding any non-target effect are more difficult to substantiate, since in stan-
dard statistical hypothesis testing, we can only associate a precise probability to err with
rejecting the null hypothesis that assumes no effect, but not with accepting it. The main
problem here is the effect size, i.e. the difference from the null hypothesis that is consid-
ered biologically meaningful. Secondly, there will usually be a trade-off between the costs
associated with increased sample sizes and the confidence of the results of non-target
effects testing. Often, sample size will be a limiting factor due to a shortage of animals,
space for testing arenas, research funding, etc. Thus, it becomes especially important to
optimize the experimental design and to use the most powerful statistical tools to obtain
maximum confidence in the test results. Here, we will briefly (i) introduce the reader to
common pitfalls of experimental design, (ii) explain the nature of errors in statistical test-
ing, (iii) point towards methods that determine the power of statistical tests, (iv) explain
the distribution of the most commonly encountered types of data, and (v) provide an
introduction to powerful statistical tests for such data.

Introduction on design and statistical approaches in the

life sciences (e.g. Crawley, 1993; Hilborn

The last two decades have seen almost a and Mangel, 1997; Crawley, 2002; Grafen
revolution in statistical methods used in and Hails, 2002; Quinn and Keough, 2002;
ecological investigations, as can be wit- Ruxton and Colegrave, 2003), and from
nessed from a number of recent textbooks changes in approaches used in more recent
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publications. This reflects both the
increased awareness that conclusions in
ecological studies need to be drawn in a
quantitative manner with high precision
and confidence, and that, for a number of
reasons, large sample sizes are often difficult
to obtain. Thus, the need for powerful statis-
tical tools that allow precise analysis from
limited sample sizes is evident. Formerly,
the statistical analysis of data in ecological
investigations has been fraught with the dif-
ficulty that many, if not most, of the data
sampled for this purpose are not normally
distributed, and are thus not suitable for the
parametric  ‘standard’  approaches  of
Analysis of Variance (ANOVA) and Student
t-tests, Instead, non-parametric statistics
such as, e.g. Kruskal-Wallis and Mann-
Whitney U-Tests, have been used that are
known to be less powerful. In theory, the
lack of power of non-parametric statistics
may be compensated by larger sample sizes.
However, an increase in sample size is
often unfeasible for agricultural entomolo-
gists, who are usually limited by the time
that can be invested, the money that can be
spent on experiments, and/or the number of
replicates that can be obtained, through a
shortage of either experimental fields or
insects to work with. Besides such restric-
tions, several other problems might arise,
most of which can be well illustrated by the
following example. A couple of years ago,
one of the authors of the present chapter
heard a talk at an entomological conference,
where an investigation into the possible
side-effects of genetically modified organ-
isms (GMQ) on biodiversity in crop fields
was presented. The authors did not find sig-
nificant treatment effects in most of their
tests, but we found it difficult to decide
whether the lack of treatment effects was
due to a non-optimal experimental design
and analysis of the data or whether the con-
clusion of no effect could be drawn with
confidence. Non-target effects of GMOs are
an issue of risk assessment that corresponds
well with investigations on non-target
effects of natural enemies, and thus is used
here for an illustration of general problems
in design and analysis of risk assessment
studies.

This example inspired us to use a
computer-generated data set in this chapter
to elucidate some of the problems of design
and analysis of non-target effect studies, the
non-independence of data that leads to
pseudoreplicates, the lack of statistical
power and the difference between powerful
and less powerful statistical techniques.
Imagine the following research question and
set-up: we wanted to know whether plant-
ing genetically modified plants that are
resistant to a target pest species would affect
the biodiversity of non-target insects in the
crop field, For this, we were allowed to do
our experiments on a single large field.
Imagine further that we partitioned our field
into three sections; thus, we had one section
with the GMO treatment, adjacent to the
section with the conventional crop (serving
as control), and on the last section an isoline
of the genetically modified crop, which does
not express the resistance against the herbi-
vore pest (serving as a second control), was
sown. We sampled the hiodiversity of non-
target insects at ten spots within each of the
field sections. Altogether, we received ten
data points for each of the three treatments.
Imagine we found that the biodiversity of
non-target insects in one treatment, e.g. the
GMO treatment, was significantly lower.
Can we conclude with confidence that the
GMO crop affects the biodiversity of non-
target insects negatively? Not necessarily.
Remember that all the samples for the
GMO treatment came from one region of
the field. It is possible that the biodiversity
of non-target insects had been lower on
this side of the field, e.g. due to its proxim-
ity to a road. Thus, our spatial clustering of
samples has made it impossible to attribute
the biodiversity effect to the GMO treat-
ment with confidence, and our ten samples
per field section must be considered as
being pseudoreplicates.

Now, assume we had chosen to do our
experiment in 30 fields, each allotted to one
of the three treatments at random, such that
we obtained ten fields per treatment. We
then find a small trend of decreased biodi-
versity in the GMO treatment compared
with the two control treatments. However,
using a Kruskal-Wallis test (because data are
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not normally distributed), this trend does
not appear to be statistically significant. Can
we conclude with confidence that the GMO
treatment had no negative effect? To eluci-
date this, we turned our investigation
upside down. Let us assume now that we
have an effect of the GMO treatment that
reduces the biodiversity by 20%. Using a
sample size of ten randomly drawn data
points from a Poisson distribution (note that
our index of biodiversity is based on species
counts, and that counts are usually Poisson
distributed), with appropriate means for
each of our three treatments, how often
would we find a statistically significant dif-
ference using a Kruskal-Wallis test? In fact,
we would find a significant difference in
only about 23 out of 100 cases. Thus, the
power of this test is relatively low. Using
more powerful statistical tests would
increase the power slightly: wusing a
Generalized Linear Model with appropriate
Poisson distribution we would find a signifi-
cant difference in about 27 out of 100 cases.
Even if powerful statistical approaches
are employed, the amount of replicates nec-
essary to allow conclusions with high preci-
sion can be enormous. In our example given
here, 126 instead of 30 fields would have to
be studied to detect a reduction of 20% in
biodiversity with confidence. In the largest
study conducted so far on the side-effects of
GMO, a power analysis has suggested that
60 fields per crop had to be sampled across
three years to detect effects of ecological sig-
nificance (Perry et al., 2003; Rothery et al,
2003). An experimental design of this extent
will perhaps be impossible in most cases
where we wish to test possible non-target
effects of biological control agents, and it
will not even always be necessary. What
will be necessary, instead, is a robust design
and the decision by the researchers about
what magnitude of an effect is desirable to
be detected. This requires knowledge of the
power of the statistical testing procedures
applied, and in the case of insignificant
results, stating the power of the statistical
test used. It is only then that we can evalu-
ate whether an insignificant finding is likely
to mean that there is no ecological effect, or
whether the data are not strong enough to

support such a conclusion. This piece of
information is still stated only rarely in
research papers, and powerful statistics are
not yet always employed or even available.
Therefore, in the present chapter, we will
briefly outline the logic of statistical testing
and point towards important advances in
statistical techniques for the testing of non-
target effects, We will refer to many of the
measurement variables mentioned in other
chapters of this book and provide sugges-
tions for their analysis. That does not say
that 'we can and do cover everything of
importance for the design and analysis of
testing non-target effects. However, if we
can increase awareness of possible pitfalls
of experimental design and point towards
solutions or refer to some of the excellent
statistics primers, this chapter might help to
improve the precision and accuracy of such
experiments. Though this chapter focuses
on non-target effects of biological control
agents, we would further like to stress its
relevance for other studies dealing with risk
assessment, e.g. non-target effects of pesti-
cides or GMOs.

In the following sections, we will start
by reviewing the very basics of statistical
testing, i.e. the hypotheses involved in sta-
tistical testing and the errors associated
with accepting or rejecting those hypothe-
ses. Subsequently, we will discuss the
effect size and power of statistical tests,
measurements that are of high relevance
given a statistical test does not return sig-
nificant results. Further, the need to obtain
independent data for statistical testing and
the danger of pseudoreplication will be
explained, and also how randomization
can prevent pseudoreplication. Building
upon this, we present powerful statistical
tools, such as Generalized Linear Models
and Cox regressions, for the analysis of the
kind of data that will typically be gener-
ated when assessing non-target effects,

Two Ways to Err in Statistical Testing
(- and B-errors)

By performing an experiment it remains
impossible to prove, for example, that a nat-
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ural enemy will never attack a non-target
host or prey. Using a sound experimental
design, we can aim only at achieving high
accuracy and precision in what we conclude
from the sample that we have tested. Yet,
using standard statistical procedures, there is
always some possibility that our interpreta-
tion of the data is wrong. This is due to the
fact that all the measurement variables we
are interested in are usually subject to ran-
dom variation (i.e. variation between sample
units that cannot account for a treatment fac-
tor under consideration), and that our con-
clusion is based on a sample rather than on
the entire population. Since we conclude
from a statistical test either that the null
hypothesis (H,) is wrong, and can thus be
rejected, or that the alternative hypothesis
(H,) is wrong, and thus I, cannot he

Do not reject Hy
Do not accept H,

3-error

rejected, we have two ways to err (Table
13.1). An o-error (also called Type I error)
occurs if our experimental results suggest
there is an effect of the factor of interest on
the variable we wish to explain (the so-
called ‘dependent variable’) when in fact
there is none, thus if we reject H provided
that H, is correct. A B-error (also called Type
11 error) occurs if there is a true effect of the
factor in question, but our experiment fails
to detect this effect, thus if we do not accept
H, when H, is wrong (Fig, 13.1, Table 13.1).
Only the a-error can be immediately quanti-
fied: the P-value associated with a test statis-
tic immediately provides the probability of
committing an o-error. Usually, the nulil
hypothesis is rejected if the probability of
committing an o-error is 0.05 or less. In that
case, the alternative hypothesis is accepted.

Interpretation:

Reject Hy v
Accept H,

o-elror

Fig. 13.1. Graphical representation of a.-error (area hatched in white and black) and B -error (area hatched
in grey and black) probabilities, using a one-sided;t-test, comparing, e.g. encounter rates of biological
control agents with non-target hosts. The curves on the left (for the null hypothesis) and right (for a specified
alternative hypothesis) represent the probability sampling distribution of the statistical test done. Note that,
usually, the alternative hypothesis is not specified, i.e. H, is just different from H,, and the probability
distribution of the statistical test done for H, is unknown (modified from Quinn and Keough, 2002).

Table 13.1. Hypothesis testing: the truth associated with a decision derived from a
statistical test when the null hypothesis is in fact true or not true.

Decision

H,is not rejected  H, is rejected

Truth according to model H, true

H, not true

o-error (type 1)
correct

correct
B-error (type I}
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It should be noted, however, that while the
statistical test returns a precise error prob-
ability for rejecting I, it is not possible to
associate a precise error probability with
accepting H, (see Fig. 13.1, where the o-error
is associated with the probability distribu-
tion of H; and not with H,). Moreover, it is
important to mention that the o-level is
equal to the P-value of the test only if we
perform a single test on a given set of data. If
we wish to perform multiple pairwise com-
parisons between, e.g. means from an experi-
ment with more than two treatments, the
probability of making at least one a-error by
chance among those tests increases with the
number of tests performed. This probability
of making one or more o-error is called the
family-wise o-error rate. When such tests are
not independent from each other, e.g. if one
data set is used more than once in a test, the
family-wise o-error rate becomes difficult, if
not impossible to calculate precisely. Yet,
several procedures have been put forward to
correct for multiple testing, The best known
is the Bonferroni procedure, where the o-
error is divided by the number of tests per-
formed to obtain a mnew significance
threshold and to keep a global a-error for the
whole testing procedure. However, this pro-
cedure is overly conservative, i.e. in danger
of committing B-errors (to elucidate this,
imagine shifting the border between accept-
ing and rejecting H; in Fig. 13.1 to the right;
while o-error decreases, B-error increases).
The standard procedure for correcting for
multiple testing is the sequential Bonferroni
procedure suggested by Holm (1979), where
P-values of all m tests are ranked from
largest to smallest: the smallest P-value is
tested at a/m, the second smallest is tested at
o/(m—1) and so on, until the first non-signif-
icant result occurs. Recently, this procedure
has also been criticized for being too conser-
vative (Moran, 2003), and there is an ongo-
ing discussion about the optimal way to
correct for multiple testing (Garcia, 2004;
Neuhduser, 2004; Verhoeven et al., 2005).
For a good overview on this topic, we
recommend the reader consults Quinn and
Keough (2002). An important aspect that
needs particular attention when testing for
non-target effects, if we want to err on the

side of caution, is that it might be more
important to know the probability that an
effect actually exists, given we did not find
an effect (the 8-error), than accurately quan-
tifying the o-error. An a-error fixed at 0.05 is
not necessarily meaningful. What we need to
know instead is the power of the statistical
test (see mext section, below), which might
lead us even to compromise between o~ and
B-errors (see below).

13
i

Example

Taking one of our above-mentioned data
sets about the effects of GM-plants on the
biodiversity of non-target insects, our null
hypothesis would be that in plots with all
three treatments (GMO, non-GM isoline
and conventional crop) the insect biodiver-
sity would be the same. Now, we will not
use a Kruskal Wallis test (K-W-test) as in
the introduction, because it would not be
easy to calculate the B-error associated
with the K-W-test. Instead, by using an
ANOVA on square-root transformed data
(to achieve Gaussian distribution of data),
we find that the o-error is P = 0,584. Thus,
rejecting the null hypothesis and accepting
that there is an effect of plant treatment on
biodiversity, one would err in 58.4% of the
cases. Using a programme for Power analy-
sis (see below) one can calculate the
B-error. In our case, the B-error is 0.768, if
we wish to be able to detect a 20% differ-
ence in biodiversity of non-target insects.
Thus, by not rejecting the null hypothesis,
and consequently, by not accepting the
alternative hypothesis, one would err in
76.8% of the cases. Obviously, this data set
is insufficient for either accepting the alter-
native hypothesis or for not rejecting the
null hypothesis with confidence.

Ecological Effect Size, Replicate
Number and the Power of Statistical
Tests

Statistical power is the probability that a
given test will result in rejection of the null
hypothesis when that null hypothesis is,
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indeed, false. Hence, power = 1—[, For any
particular test, power is dependent on the
o-level, the sample size, the sampling vari-
ance and the so-called ‘effect size’ (ES).
The ES can be regarded as the magnitude
of the departure from the null hypothesis
(observed ES), or as the difference between
the values considered in the null and the
alternative hypotheses (see Fig. 13.1 and
below),

There are two general approaches in
Power Analysis (PA). The first one is
a priori PA, where one alms to estimate the
number of replicates necessary to reach a
given power in an experiment, This can be
done by specifying the effect size, the a-
level, the desired power and (dependent on
the type of analysis) the standard devia-
tion, which has to be estimated from pre-
liminary experiments or from the
literature. It should be stressed, however,
that estimates for the assumed variance of
the data are crucial. Garey and Keough
(2002) have shown that the calculated sam-
ple size can vary by an order of magnitude
depending on what dataset was used as a
baseline for variance. The second approach
is a post hoc analysis, where the researcher
calculates the power achieved in an experi-
ment where the null hypothesis could not
be rejected. While general agreement exists
on the importance of a priori PA, there is
considerable debate on the value of
post hoc PA. In particular, parameters are
estimated based on the sample data in
post hoc PA and are therefore interdepen-
dent. Since these estimates are subject to
sampling error, the computed values for
power are also subject to error and thus
should be viewed with some caution. .

Obviously, the statistical ability {o
detect an effect (i.e. the power) increases
with the size of that effect and, in fact,
power is extremely sensitive to one’s
choice of effect size (Cohen, 1988). There
are several approaches for calculating
post hoc power, and the effect size plays a
crucial role in all of them. The first
approach is to use the observed effect size,
e.g. taking the difference between the con-
trol and the treatment from the data, and
variance. However, this has clear flaws

which form the basis of large parts of the
criticism of post hoc PA (Hoenig and
Heisey, 2001; Di Stefano, 2003). Actually,
the P-value and power are dependent on
the observed effect size such that tests with
high P-values tend to have lower power,
and vice versa. Therefore, calculating
power based on observed effect size and
variance adds no new information to the
analysis (Thomas, 1997).

The second approach is to use a pre-
defined effect size and observed variance.
Although it can be often difficult to define
effect size properly, a useful approach,
especially in the context of assessing non-
target effects, has been to estimate an effect
that can be considered biologically signifi-
cant, For instance, if an earlier study
showed that 40% mortality caused popula-
tions to decrease in a wider context, this
figure could be used as effect size for
another study. As was shown in detail and
exemplified with an example by Thomas
(1997), this second approach appears valu-
able and allows one to’ evaluate whether
the sample size and o-level were likely to
result in detection of a biologically mean-
ingful effect.

A third approach is to establish an effect
size based on the null and the alternative
hypotheses. However, in this case the latter
needs to be formulated quantitatively,
which is only possible in certain instances.
In the absence of any strong arguments that
are independent of the hypothesis being
tested, the selection of an effect size
becomes arbitrary. However, in the case that
effect size could neither be calculated based
on biological significance nor from the alter-
native hypothesis, some conventions can be
used that were established by Cohen (1998).
He suggested using large, medium or small
effects as a convention, but the exact size of
these effects depends on the type of statisti-
cal analysis used. Many software packages
readily provide the standardized effect,
which is basically the difference between H,,
and H, divided by the standard deviation of
the data. Although this avoids specifying
the sampling variance, we feel it unwise to
use the standardized effect, because it is
poorly related to any biologically meaningful
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effect. Rather, we recommend calculating
effect size based on either biological signifi-
cance or on a (uantitative alternative
hypothesis, but we also believe that it is
useful to put the ES of a study into context
and to compare it to the procedure proposed
by Cohen (1998). As a consequence of the
importance of the ES outlined above, we
also recommend strongly to report in detail
on the ES underlying the analysis, rather
than giving only a figure for § or power (cf.
Steidl et al., 1997).

As a special case of PA, the maximum
detectable effect size could be calculated;
this can be performed easily by fixing the
power and the o-level appropriately. For
instance, a researcher might wish to know
about the effects he/she would have been
able to dsetect given that the power is 0.8, a
figure that has often been used. What con-
stitutes a sufficient power is not absolutely
fixed, though conventions of 0.8 or 0.95
have been suggested in the literature as
high power (Cohen, 1988). However, in
studies on environmental impact it is
debatable why one should be satisfied with
accepting a four-times higher B- than o-
error, which is the case when using the 0.8
value. In contrast, one would like to be at
least as confident in avoiding B-errors and
o-errors alike in such investigations. Thus,
a researcher conducting experiments on
potential non-target effects of a biological
control agent could ask what maximum
possible effect size is consistent with o = f3.
In this context, it is important to note that
in studies dealing with non-target effects, it
may be reasonable to increase the o-level,
thereby increasing power. Eventually, it
depends on the costs associated with spe-
cific non-target effects. If the costs of com-
mitting B-errors are especially high, PA
allows one to adjust o/ to reflect those
costs (Rotenberry and Wiens, 1985).

As an alternative to classical PA, the
application of confidence intervals and
equivalence testing has been suggested
recently (Hoenig and Heisey, 2001; Andow,
2003). Demonstrating such equivalence
requires reversing the traditional burden of
proof. In equivalence testing, the null
hypothesis states that a large effect exists

in either direction, i.e. the actual treatment
effect (D) is larger than a predefined &
(Hy:[D| > 8). The alternative hypothesis is
the hypothesis of equivalence, or H;:|D| = 8.
Again, this kind of analysis depends on the
knowledge of what a large (biologically
meaningful) effect is, and the determina-
tion of delta is similarly as difficult as
determination of the effect size, as dis-
cussed above, Given the large uncertainty
in this area, it is difficult to give advice on
this, though the general idea is appealing
for decision-makers in risk assessment
(Peterman, 1990).

In conclusion, a priori PA can be a valu-
able aid in the design of any study and, in
particular, for monitoring programmes (see
Barratt et al., Chapter 10, this volume). In
addition to the information on sample size
necessary to detect a given effect, it is also
very valuable for reducing the cost of large-
scale programmes as far as possible.
Depending on the research question, post
hoc PA also can be very useful, particularly
because it is not always possible to con-
duct an ideally high number of replicates.
It should be stressed that it is not possible
with PA to associate an unambiguous prob-
ability of being correct in not rejecting the
nuil hypothesis although, unfortunately,
this has been done quite often in the past
(see Peterman, 1990). Instead, it is only
possible to argue that, with a probability of
(1—PB), there is no difference from the H,
greater than the effect size. If both the ES
and f are small (and consequently the
power is high), it is reasonable to conclude
that the effect is negligible. It is particu-
larly important in studies on non-target
effects that a conclusion from a non-signifi-
cant statistical result should be subject to
the same stringent probability standards as
a positive conclusion from a significant
statistical result. Power analysis could be
used to provide these standards.

Programs available
A comprehensive review on this topic was

written by Thomas and Krebs (1997), and
we do not attempt to provide a similar
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detailed compilation here. Instead, we
would like to refer to some published infor-
mation — also on the internet — and high-
light a few recent developments. Since the
influential paper by Thomas and Krebs
(1997), some significant advances have been
made, wherein some programs are able to
calculate the power for regressions, compar-
isons of means (ANOVA and General Linear
Models) or proportions (x? tests), for corre-
lation tests and survival analysis. However,
there are still several statistical tests for
which PA is not available and, unfortu-
nately, this includes the Generalized Linear
Models, which can be a very powerful sta-
tistical tool for data that do not follow a
Gaussian distribution. There are also possi-
bilities for calculating power for other tests,
but efforts to do this can vary from relatively
simple to challenging. For instance, Monte
Carlo simulations can be used to calculate
power for non-parametric tests (Peterman,
1990). Alternatively, data have to be trans-
formed to fit the assumptions of tests that
allow PA, e.g. log-transformation or square-
root transformation for count data, arc sine
square-root transformation for proportions
(see, e.g. Quinn and Keough, 2002, or
another standard statistics textbook, for fur-
ther information). Information on programs
and their strengths and weaknesses can be
also obtained from the following home-
pages: List of programs (from 1996)
(http://www.insp.mx/dinf/stat_list.html}
and paper by Thomas and Krebs (1997),
(http://www.zoology.ubc.ca/~krebs/power.
html).

Examples £

Let us, again, take a look at the example
data provided in the introduction. Using
ten fields for each treatment, the effect of
GM plants on insect biodiversity was
tested. If we were to analyse those data
with ANOVA, we would have to transform
the species numbers to receive data with
Gaussian distribution. Square root transfor-
mation (y'=Vy+1) could be favourable in
our case. If our control plots could harbour
eight non-target species and we wish to be

able to detect a 20% loss of biodiversity
(i.e. 6.4 species on average), the resulting
transformed means for species numbers
would be 3, 3, and 2.72 for the three treat-
ments, respectively, and the standard devi-
ation would be approximately 0.5 for all
treatments, A simple ANOVA did not
detect a significant effect. Entering the
above-mentioned values in a programme
for PA returns an effect size of ES = 0.2828,
and thus what is conventionally described
as medium effect size. With a total sample
size of 30 the power is (1—B) = 0.2397.
How many replicates would be needed to
achieve a power of 0,8 with such an effect
size? Using an a priori test in the pro-
gramme for PA we receive a necessary
sample size of n = 126. Thus, to demon-
strate with high confidence that no effect
exists would require a much larger study
(see, e.g. Lang, 2004 for an estimate of nec-
essary sample sizes for non-target effects of
Bt-plants). '

Using another example, let us see how
large the sample size should be in a non-
target effects study of an insect natural
enemy. Using the above-mentioned exam-
ple of Thomas (1997), where the non-target
population would be affected only if the
mortality were higher than 40%, we can
use 0.4 as effect size in an a priori test. If
we were to achieve a power of 0.8, the nec-
essary sample size in an experiment with
two treatments would be n = 52.

Avoid Being Trapped in
Pseudoreplication

In a seminal paper, Hurlbert (1984) pub-
lished a review with respect to proper repli-
cation of 176 field experiments covering 156
papers published in ecological journals
between 1960 and 1983. Disturbingly, he
found that of the 101 studies applying infer-
ential statistics, 48% contained pseudorepli-
cation. Pseudoreplication occurs whenever
‘inferential statistics are used to test for treat-
ment effects with data from experiments
where either treatments are not replicated
(though samples may be) or replicates are
not statistically independent’ (Hurlbert,
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1984). Statistical independence means that
each individual data point might positively
or negatively deviate from the population
average due to random variation not related
to the deviation of another point. An
example of lack of statistical independence
is given in the introduction, where samples
of a study on effects of GMOs on biodiversity
were segregated by treatment and, thus, dif-
ferences attributed towards the treatment
could equally well have been attributed to
some factor typical for the section of the
field the samples came from. In this case, the
effects of treatments are potentially con-
founded with inherent differences between
field plots. Although the awareness of
researchers of avoiding pseudoreplication
has increased and fewer studies contain
analyses with pseudoreplicated samples,
Heffner et al. (1996) and Ramirez et al. (2000)
found, in a recent study on pseudoreplica-
tion in experiments on the olfactory
response of insects, that an alarming 46% of
105 studies were pseudoreplicated, because
of either a lack of independence in the stim-
ulus or the experimental device, the
repeated use of experimental animals or the
use of groups of animals.

Thus, pseudoreplication is still an issue
in the design of experiments, and much
care has to be taken to avoid any spatial or
temporal segregation of samples from dif-
ferent treatments. For example, when test-
ing the host specificity of biological control
agents, it is essential that insects for the
tests on non-target hosts do not come from
one rearing container or incubator and con-
trol animals (for the test on target hosts)
come from another, or that non-target hosts
are always tested in the same container or
field cage or on the same plant while target
hosts are tested in another cage or on
another plant. Equally, positions of experi-
mental units within an experimental cham-
ber or on a field plot need to be switched
between treatments to avoid confounding
effects of differences in temperature and
light conditions, etc. In the same manner,
the full set of trials on non-target hosts
should not be conducted before tests with
target hosts are carried out. Randomization
of testing order, or random assignment to

plants or test cages, ensures that
pseudoreplication can be avoided. For fur-
ther reading, we encourage the reader to
take a look at the section on pseudoreplica-
tion in Ruxton and Colegrave (2003).

Experimental Design: is
Randomization Feasible?

Basic textbooks on statistics always stress
the point that, in order to draw relevant
conclusions from an experiment, all treat-
ments, replicates, etc., should be random-
ized. But what does that mean?
Randomization is a process that assigns
each replicate of each measured unit (ani-
mal, field, species, etc.) to each treatment
in a random order, rather than by choice.
By doing this, any effect observed will be
unequivocally attributed to the treatment
studied, and not to lurking variables or
uncontrolled factors which might vary over
the length of the experiment. For example,
if one was interested in estimating the
host-range specificity of different potential
biological control agents for a pre-release
evaluation of non-target risks, he/she
would sequentially offer several potential
host species to the different biclogical con-
trol agents studied (see van Lenteren et al.,
Chapter 3, this volume for a detailed
description of the proposed method to be
used). In this case, it would be preferable
to: (i) test the different host species in a
random order for the different biological
control agents, and (ii) test each host
species, with the different biological con-
trol agents taken in random order as well.
Indeed, in the case where the different host
species are always tested in the same order,
uncontrolled factors varying with the dura-
tion of the experiment could influence the
results and lead to differences that might
be wrongly interpreted as being due to dif-
ferences between species. Also, if all
potential host species are tested succes-
sively on each biological control species, a
difference observed between biological
control species might simply be due to
uncontrolled factors varying with the total
duration of the experiment.
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The goal of randomization is to produce
comparable groups of replicates in terms of
general animal, field, etc., characteristics
and other key factors that might affect the
outcome of the result obtained. In this way,
all groups of replicates are as similar as
possible at the start of the study. At the end
of the study, if group outcomes differ
between each other, the investigators can
conclude with some confidence that the
treatment tested really influenced the
results obtained.

Most of the time, randomization is per-
formed by means of a computer program,
coin flips or a table of random numbers to
assign each measured unit to a particular
treatment, Advanced additional methods
are sometimes used.

Is randomization always feasible, espe-
cially in evaluating non-target risk in bio-
logical control programmes? Unfortunately,
the answer is likely to be ‘no’. In the exam-
ple given above, where we wanted to esti-
mate the host-range specificity of different
potential biological control agents, it
would probably be unrealistic to design an
experiment in which all host species tested
and all potential biological control agents
compared were randomized. Regarding the
fact that the experimental scheme is based
on a succession of different measures (see
van Lenteren et al., Chapter 3, this vol-
ume), having everything randomized
would indeed imply having available, dur-
ing the total duration of the experiment, a
sufficient number of all host and biological
control agent species at the right stage. In
most cases this would simply be not feasi-
ble for economic or spatial reasons. All of
this should be kept in mind and, if real
randomization appears not feasible, results
of the experiments should thus be inter-
preted with caution.

A Unified Approach Instead of a Menu
of Tests, General and Generalized
Linear Models

When the traits to be analysed follow a
Gaussian (also called ‘Normal’) distribu-
tion, standard t-tests, ANOVA or regression

analyses can be used to statistically test the
effect of a treatment. All these different
‘classical’ methods assume that the distrib-
ution of residuals around the fitted model
(i.e. the error distribution) is normal
(Gaussian). These different methods, which
most readers will be familiar with, are
called ‘General Linear Models’, since in its
simplest form, a linear model specifies the
(linear) relationship between the variable
(or response) y, to be explained (the so-
called ‘dependent’ variable), and a set of
predictors, independent variables, the xs,
such that :

E(y) = b, + byx, + byx, + . + bexy (1)

In this equation, b, is the regression
coefficient for the intercept and the b,
values are the regression coefficients (for
variables x, to x;) computed from the data.
So, for example, one could estimate (i.e.
predict) the weight of a parasitoid female as
a function of the type and number of hosts
it feeds on. For many data analysis prob-
lems, estimates of the linear relationships
between variables are adequate to describe
the observed data, and to make reasonable
predictions for new observations. However,
as we have seen previously (see Box 13.1),
most of the biological traits that have to be
measured to estimate non-target risks of
biological control agents do not necessarily
follow a Gaussian distribution. In such
cases, the relationship between the variable
(or response) y to be explained cannot ade-
quately be summarized by a simple linear
equation, for two major reasons:

DISTRIBUTION OF THE DEPENDENT VARIABLE.
First, the dependent variable of interest may
have a non-continuous distribution and,
thus, the predicted values of the statistical
model should also follow the respective dis-
tribution. Any other predicted values are
not logically possible. For example, an
investigator may be interested in predicting
one of two possible discrete outcomes (e.g. a
host is accepted or not). In that case, the
dependent variable can take on omly two
distinct values, and the distribution of the
dependent variable is said to be binomial.
Another example would be to predict how
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many females a male can mate with. If we
were to study actual numbers and not aver-
age number of matings per male, the depen-
dent variable (i.e. number of females mated)
is discrete (i.e. a male can mate with one,
two or three females and so on, but cannot
mate with 3.46 females or with fewer than 0
females), and most likely the distribution of
that variable is highly skewed (i.e. most
males will mate with one, two or three
females, fewer will mate with four or five,
very few will mate with six or seven, and so
on). In this case it would be reasonable to
assume that the dependent variable follows
a so-called Poisson distribution.

LINK FUNCTION.

A second reason why a
simple linear model might be inadequate to
describe a particular relationship is that the
effect of the predictors on the dependent
variable may not be linear in nature. For
example, the relationship between the

fecundity of a synovigenic parasitoid
female and its age is most likely not linear
in nature. Under standardized conditions,
fecundity will not markedly differ between
females of one or two days of age, whereas
such a difference will probably be greater
between older females, even with only one
day’s age difference. Probably some kind of
a power function would be adequate to
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describe the relationship between females’
age and fecundity, so that each increment
in days of age at older ages will have greater
impact on females’ fecundity, as compared
to each increment in days of age during
early adult life. Put in other words, the link
between age and fecundity is best described
as non-linear, or rather as a power relation-
ship in this particular example.
Generalized Linear Models are a gener-
alization of general linear models and can
be used to predict responses both for
dependent variables that are not normally
distributed and for dependent variables
which are non-linearly related to the pre-
dictors. Actually, general linear models can
be considered as special cases of the gener-
alized linear models. In general, in linear
models, the dependent variable values
have a normal distribution and the link
function, which ‘connects’ the dependent
variable to a linear combination of predic-
tor variables, is a simple identity function
(i.e. the linear combination of values for
the predictor variables is not transformed).
To illustrate this, equation (1) gave the
general linear model linearly associating a
response variable y with values on the x
variables, while the relationship in the gen-
eralized linear model is assumed to be

E(y) = g(by + b,x, + byx, + ..+ bxy) (2)

where g(...) is a function. Formally, the
inverse function of g(...), say (...}, is called
the link function, so that

f(E(y)) = by + byX, + byX, + .o + by (3)

where E(y) stands for the expected value
of y.

Various link functions (see McCullagh
and Nelder, 1989) can be chosen, depend-
ing on the assumed distribution of the y
variable values. Table 13.2 gives the four
main Generalized Linear Models that can
be used in experiments performed to esti-
mate non-target risks of biological control
agents,

The values of the regression parameters
(and their variance and covariance) in the
Generalized Linear Mode! are obtained by
a so-called maximum likelihood estima-
tion, which requires iterative computa-
tional procedures. Several statistics
packages are currently available for doing
this. Then, tests of the significance of the
effects in the model can be performed via
the Wald statistic, the likelihood ratio or
score statistic. Detailed descriptions of
these tests can be found in McGullagh and
Nelder (1989).

In summary, Generalized Linear Models
are powerful and efficient tools for
analysing the sort of -data collected in
experiments performed to estimate non-
target risks of biological control agents. Just
a brief overview has been provided here,
and there are several textbooks that pro-
vide a thorough description of this sort of
statistical modelling approach (e.g. Hosmer
and Lemeshow, 1989; McCullagh and
Nelder, 1989). We strongly recommend
readers of this chapter to consult them.

Examples

Using again our example from the introduc-
tion, we may analyse one of our computer-

Table 13.2. List of the main Generalized Linear Models that can be used in experiments performed to
estimate non-target risk of biological control agents. Link functions indicated are the most ‘popular’ ones.
Others can be used in particular cases (see McCullagh and Nelder, 1989 for an exhaustive description).

Distribution Model description Appropriate link function Type of data analysed
Normal Traditional linear modsl identity: f(W =y Normally distributed traits
Binomial Logistic regression logit: £(y) = log{y/(1-)} Fractions (proportions)
Poisson Log-linear model log: f(y) = log(y) Counts

Gamma Gamma model with inverse: f(y) =11y Time durations

inverse link
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generated data sets using a Generalized
Linear Model. Since we count the number
of species in each field plot, our data are
most likely Poisson distributed. Specifying
a Generalized Lincar Model with Poisson
distribution and log link function, and
using the number of species per plot as
response variable and the crop treatment
(GM-plants, non-GM isoline and conven-
tional crop) as factor, we find a P-value of
0.0962; thus, there is an insignificant trend
in the data (Fig. 13.2a). An analysis of these
data using an ANOVA on square root-trans-
formed data yields a P-value of 0.147. A
visual comparison (Fig. 13.2b and ¢) and
statistical tests of the normality of the stan-
dardized residuals from both analyses (P =
0.515 and P = 0.474, respectively) suggest
that the Generalized Linear Model is the
slightly more adequate approach to analyse
these data. Note that in both cases the sta-
tistical result is insignificant and, thus, the
null hypothesis of no effect cannot be
rejected, but also that the power analysis
suggests a lack of power to conclude with
confidence that there is no effect.

As a second example, imagine a large
arena choice test as suggested by van
Lenteren et al. (Chapter 3, this volume). We
have three different treatments, with ten
field cages each: (1) with the target host (or
prey, which is used synonymously here)
and non-target host present in the same
field cage together with the natural enemy,

(2) with only the non-target host and the
natural enemy in the same field cage, and
(3) with only the target host and the natural
enemy in the same field cage. We are inter-
gsted in whether the target host is killed at
a higher rate than the non-target host and
whether the mortality of the non-target host
depends upon the fact of whether the target
host is available to the natural enemy or
not. We will not test whether the mortality
rates of target and non-target host are equal
within treatment (1), because these data
would not be independent. Rather, we will

- test whether the mortality of non-target

hosts in treatment (1) is equal to the mortal-
ity of non-target hosts in treatment (2) and
equal to that of the target hosts in treatment
(3) (this is our null hypothesis). Again, we
will use computer-generated data. Given
that the mortality rates found were 4.1%,
10.6% and 50.5% in (1), (2) and (3}, respec-
tively, we use a Generalized Linear Model
with binomial distribution and logit link
and find a significant effect overall and also
between treatments (Table 13.3). Thus, in
this example, the non-target host is attacked
at a relatively low rate, and even less so
when target hosts are available. This result
is visible from the estimates in Table 13.3,
where the estimate for mortality is positive
and thus higher in treatment (2) than in
treatment (1), and much higher (more than
three times higher) in treatment (3) than in
treatment (1).
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Fig. 13.2. Simulated averags (+ SE) effect of plant treatment on non-target insect species (panel a). The
computer-generated data were analysed by means of a Generalized Linear Model with a log link function
and ANOVA on square root transformed values, respectively. Panels (b) and (c) show Normality Plots for
the standardized residuals of the respective tests. The relationship in panel (b) shows a slightly better fit
with normality assumptions than in panel (c).
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Table 13.3. Results of a Generalized Linear Model on computer-generated data for the mortality rates of
target and non-target hosts in large arena choice tests, using an experimental set-up as suggested by
van Lenteren et al. (Chapter 3, this volume) (for details, see text).

Parameter Treatment Estimate DF y-Square  Pr> ChiSq
Intercept —3.2591 1 378.47 <0.0001
Target host (3) 3.2511 1 329.63 <0.0001
Non-target host in no-choice test (2) 1.0839 1 30.14 <0.0001
Non-target host in choice test” (1) 0 0 0.0000

* In the statistics package SAS, which was used here,

the last treatment (in this case (1)) is set to zero

by convention and the difference between the last and all-other treatments (2) and (3) is tested.

Repeated Measurements in
Generalized Linear Models

Sometimes, the same individual insect or
the same experimental plot is systemati-
cally sampled more than once in the course
of an experiment. Data from such samples
violate the assumption of the indepen-
dence of data points since they do not have
an equal probability of deviating positively
or negatively from the population average,
but contain some variation due to inherent
properties of the individual animal or
experimental plot. They can thus be con-
sidered pseudoreplicates that cannot be
entered into statistical tests as independent
data points. Liang and Zeger (1986) intro-
duced Generalized Estimating Equations
(GEE) to Generalized Linear Models as a
method of dealing with such correlated
data. GEE is not available in all statistical
packages that provide Generalized Linear
Models, but at least SAS (procedure
Genmod) and S-plus/R provide GEE. They
require that a variable identifies the
repeated subject and that the model state-

ment refers to this variable as repeated.
More details about GEE can be found, e.g.
in Quinn and Keough (2002).

Example

Imagine the following field experiment (see
van Lenteren et al., Chapter 3, this volume
for the rationale of a field test on non-target
effects of a biological -control agent): we
wish to monitor the mortality induced by
the natural enemy on the target and non-
target hosts across a time period after the
release of the natural enemy. We are espe-
cially interested in whether the attack rate
on non-target hosts depends upon the den-
sity of the target host, which may decrease
over the course of the experiment. Again,
we will use computer-generated data. In
our computer program, we select ten differ-
ent field plots that we resample at five dif-
ferent times. Over time, the number of
target hosts per field plot decreases while
the mortality of the non-target hosts
increases {Table 13.4). However, in order to

Table 13.4. Computer-generated data for a field test on non-
target effects as a function of time (sampling date) and density
of target hosts. Means and standard errors of ten field plots.

Density of Mortality of
Sample target host non-target host
1 996.6 £ 10.9 1x0.4294
2 493.4 +7.86 38 +0.516
3 289.9 +5.78 5.6 +0.872
4 172.0 £2.78 7.3+0.870
5 102.3 +8.65 11.8 = 1.872
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elucidate the effect of target host density,
we enter sampling date and density of the
target host as covariates in the model. The
Generalized Linear Model allows us to sep-
arate the effect of sampling times and target
host density. The GEE model for repeated
measurements takes care of the fact that we
resample the same field plots, and thus tar-
get host densities and the mortality rate of
the non-target hosts in each plot are not
independent. With both variables, sampling
date and the density of the target host, in
the model we do not find a significant effect
(Table 13.5). However, by removing the
variable with the least explanatory power
from the model (i.e. sampling date), we find
that the density of the target host affects the
mortality rate of the non-target host (Table
13.5), Estimates from the model show that
mortality of non-target hosts increases with
decreasing density of the target host, indi-
cating a switch of the natural enemy to a
non-preferred host when the preferred host
is less available,

Time as a Measurement Variable: Cox
Regression and Survival Analysis

To estimate the potential impact of natural
enemies on their host and potential non-
target host populations, it is often useful to
acquire knowledge about the survival times
of such insects. Survival data of insects are
not normally distributed, but rather the
probability A of an insect being dead at time
f, in the simplest case, can be considered to
be constant. This leads to an exponential
distribution of the data with mean survival
time 1/A, well known from the decay of
radioactive particles and a series of popula-
tion dynamics models, e.g. Ricker fishery
models. Here, the arithmetic mean survival
time is a poor predictor of the longevity
and, usually, the median is used. Besides
considering an exponential distribution of
the survival times, predictors of a general-
ized linear model with the more general
Gamma distribution and inverse link func-
tion give, as this was stated in the previous

Table 13.5. Analysis of Generalized Estimating Equations (GEE) parameter estimates of a Generalized
Linear Model for repeated measurements of the mortality rate of non-target hosts in a field test (data
from Table 13.4). The upper part of the table shows the analysis with both sample date and density of
target host as explanatory variable, which results in an insignificant model. Removing the variable with
least significance (i.e. ‘sample date’) leads to a model that demonstrates a significant and negative
refationship between the density of the target host and the mortality of the non-target host (lower part of

the tabie),
Empirical Standard Error Estimates
Parameter Estimate Standard Error Z of Wald test Pr>|Z
Intercept —3.2420 0.9599 -3.38 0.0007
Sample date 0.2715 0.1917 1.42 0.1568
Density target host —0.0016 0.0011 —1.44 0.1503
Score Statistics For Type 3 GEE Analysis
Source DF Chi-Square Pr > ChiSq
Sample date 1 1.44 0.2304
Density target host 1 212 0.1451
Empitical Standard Error Estimates
Parameter Estimate Standard Error Z of Wald test Pr>|Z7
Intercept —1.8476 0.1351 -13.68 <0.0001
Density target host —0.0031 0.0005 -5.99 <0.0001
Score Statistics for Type 3 GEE Analysis
Source DF Chi-Square Pr > ChiSq
Density target host 1 9.14 0.0025
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section, accurate results. Since Generalized
Linear Models are fully parametric, they are
the most powerful solution for survival
analysis, even though in several statistical
packages the user may find other types of
analyses that are mostly non- or semi-para-
metric in the menu for survival analysis.
However, there is — at least — one possible
impediment to using Generalized Linear
Models for survival analyses. Imagine a test
performed to evaluate the effect of insecti-
cide residues on survival times. While all
insects in the treatment group (insecticide)
are dead at day 10, 8% of the specimens in
the control group are still alive at day 20,
the planned end of the observation. What
should be done with the data points from
this 8% of the control group? Should they
be left out, since no data for their longevity
have been measured? This would lead to a
loss of biologically meaningful data and,
even more disturbing, to a bias in the inter-
pretation, since we know that those indi-
viduals survived until at least day 20. The
only thing we do not know is for how much
longer they would have lived. These data
points are called ‘right-censored’.

A so-called log-rank test, or, more gener-
ally, a Cox regression model (= proportional
hazards model), can adequately deal with
censored survival data (Cox, 1972).
Recently, a plethora of different studies have
used such a statistical analysis for ecological
investigations on insects (e.g. van Alphen et
al., 2003). Besides using this sort of analysis
to study changes in survival time, survival
analysis can also be used when it comes,
e.g. to testing residence times or withdrawal
times of natural enemies on patches with
target and non-target hosts, or when testing
the latency until a natural enemy attacks a
host or prey (see van Lenteren el al.,
Chapter 3, this volume). Briefly, the proba-
bility of dying, leaving a patch or attacking,
A, can be modified in the course of time by
covariates and the Cox regression provides
gstimates for how the covariates, i.e. treat-
ment effects, modify the baseline hazard of
dying, leaving a patch or performing an
attack. For further information, we recom-
mend readers to consult papers that provide
a thorough description of the method (e.g.

Haccou and Hemerik, 1985; Haccou and
Meelis, 1992; Wajnberg et al., 1999; van
Alphen et al., 2003).

Example

Imagine a small arena no-choice test with
behavioural observation of a candidate nat-
ural enemy on either target or non-target
hosts {see van Lenteren et al., Chapter 3,
this volume for the setup). Observations
are limited to one hour, after which almost
all of the target hosts were attacked, and
56.7% of the non-target hosts. However, it
seems that while target hosts are attacked
almost immediately, the natural enemies
attack non-target hosts only after a rather
long period of searching the small arena,
from which they cannot escape. The accep-
tance of non-target hosts is probably an
overestimation of the host range of the nat-
ural enemy (see van Lenteren et al,
Chapter 3, this volume) and we thus test
the latency until the host is attacked. This
will elucidate whether there is a significant
effect of the host species on the acceptance
pattern of the natural enemy. In the Cox
regression, the 43.3% of non-target hosts
that remained wunattacked are entered as
censored observations. The Cox regression
returns a highly significant (P < 0.001)
effect of host species on the probability of
being attacked. To elucidate this in detail,
we plot the cumulative hazard function.
This function gives the cumulated instanta-
neous potential for the event (i.e. the
attack) to occur, given it has not yet
occurred, The cumulative hazard function
is thus a useful measurement of the danger
of being attacked at any point in time.
Here, it indicates that the probability of
being attacked is 15.733 times higher per
unit time for target hosts compared with
non-target hosts (Fig. 13.3).

Conclusions
Conducting experiments for the assessment

of non-target effects of biological control
agents will be costly in terms of the man-
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Fig. 13.3. Cumulative hazard functions for the
jatency until target hosts (solid line) and non-target
hosts (dashed line) are attacked. Target hosts
have a much higher probability per unit time of
belng attacked than non-target hosts.

power involved, the specimens provided
for testing and the plants or plant parts
needed for, e.g. host specificity tests etc.
Thus, there is a high premium on using the
best experimental design and the most
powerful statistical methods, in order to
obtain reliable test results from a reasonable
amount of replicates. This is especially so,
since the result we are most interested in,
i.e. the probability that non-target effects do
not exist, is not directly testable. What we
can test is whether the null hypothesis of
no effect on non-target species is wrong. If
we do not find a significant effect, it very
much depends upon the power of the test
to decide with some confidence that no
effect exists. Therefore, great care should be
taken to determine the appropriate replicate
number of tests. A priori power analyses, as

pointed out in this chapter, are the appro-
priate approach here, and whenever non-
significant results are stated, the power and
the associated effect size should be stated
in order to provide the reader with informa-
tion about the degree of confidence of the
results, Furthermore, the experiments
should be planned in detail to ensure that
no pseudoreplication occurs. Recent analy-
ses of research papers in ecology have
foudd a relatively high prevalence of
pseudoreplication (Heffner et al, 1996;
Ramirez et al., 2000), in spite of Hurlbert’s
(1984) seminal paper. Thus, the importance
of avoiding pseudoreplication must be
stressed here, and randomization should be
used wherever possible to avoid interde-
pendency. Fortunately, very powerful statis-
tical techniques like Generalized Linear
Models and survival analyses have become
available and are now widely used in a
variety of biological disciplines (e.g. Garrett
et al., 2004). They not only help to increase
the precision of testing results but also the
accuracy of tests, since they can adequately
deal with non-normally distributed data
that we frequently encounter in non-target
effects testing. With this chapter we hope to
improve the awareness of the problems,
and have indicated solutions suitable for
improving the quality of experiments
assessing non-target effects of biological
control agents,
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