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H I G H L I G H T S
c We developed a stochastic model describing patch-leaving rules in animals foraging for resources.
c For this, we give a quasi close form expression for the distribution of patch residence times.
c We also present statistical procedures to estimate the corresponding parameters.
c As examples, the model is fitted on two independent experimental data sets.
c The model provides a stochastic interpretation of motivation leading foragers to optimality.
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A famous motivational model proposed for insect parasitoids by Waage (1979) provides a candidate

mechanism for patch-leaving decision rules in foragers. In this model, the animal is supposed to enter a

patch of resources with an initial tendency to stay in it, which then regularly decreases. Every

encounter with a resource item increases or decreases this tendency, and the forager is supposed to

leave the patch when this tendency or motivation falls below a given threshold. Evidence of such

increases and drops in this tendency to stay were often obtained by analyzing experimental data with a

Cox (1972) proportional hazards model. The Waage (1979) model is purely deterministic and predicts a

fixed departure time for a fixed set of encounters with foraging items. On the other hand, empirical data

show a large variability of departure times under fixed conditions. We present a fully stochastic version

which overcomes this problem and gives a quasi close form expression for the distribution of patch

residence times as well as a statistical procedure to estimate its parameters. Two examples of the

model fitting on experimental data sets are provided. This novel model, although more complicated

than Waage (1979) model, improves its realism and provides a stochastic interpretation of motivation

as a proximal mechanism leading foragers to optimality.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Most animal species exploit resources that are distributed in
discrete patches in the environment (Stephens and Krebs, 1986;
van Alphen et al., 2003; Wajnberg, 2006). This is the reason why
there have been, in the last few decades, a lot of theoretical and
experimental studies which have tried to understand how ani-
mals should optimally allocate their foraging time in each patch
they are exploiting in order to maximize their rate of progeny
production (Charnov, 1976; Stephens and Krebs, 1986; Wajnberg,
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2006). A large number of the results published were obtained on
insect parasitoids foraging for patchily distributed hosts (Godfray,
1994; Wajnberg, 2006). Besides the fact that these animals are
usually easy to rear and to study, most species are usually unable
to find enough hosts in which to lay all their eggs during their
lifetime (Driessen and Hemerik, 1992; Sevenster et al., 1998;
Rosenheim, 1999). They are thus likely under strong selective
pressures to develop efficient patch time allocation strategies,
hence to use elaborated patch leaving decision rules (Godfray,
1994; Wajnberg et al., 1999, 2004; Wajnberg, 2006). Moreover,
the foraging behavior of solitary insect parasitoids is directly
related to their fitness since each attack of a potential host will
give the opportunity to obtain (at most) one offspring.

The question of the optimal time foragers should allocate to
each patch they are exploiting was answered early within the
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Fig. 1. Graphical representation of the Waage (1979) incremental model. Lines

represent the evolution of motivation (or responsiveness) of the forager in the

course of the patch residence time. Two cases are represented: a poor patch in

which the forager enters with motivation aP1 and a rich patch in which the initial

motivation is aP2. After entering the patch, the motivation decreases linearly

except when a host is met and attacked (close circles in the rich patch, open circle

in the poor patch). At each attack, the motivation increases by a quantity I. The

departure is obtained when the motivation level falls below a given threshold rn.
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framework of the Marginal Value Theorem (MVT) (Charnov,
1976). This framework predicts that each patch should be
exploited until the rate of gain within the patch has decreased
to a marginal value. This rate, measured in energy intake units for
predators or herbivores and directly in fitness units for parasi-
toids, is the mean rate of gain that can be achieved in all the
available patches in the environment. Several examples of animal
species that are following the prediction of this theoretical model
have been published in the literature (e.g., Hassell, 1978; Hubbard
and Cook, 1978; Waage, 1979; Wajnberg et al., 2000).

This theoretical approach and all those that were developed
afterwards make the implicit assumption that foragers know
exactly the distribution and the quality of all available patches
in the habitat (Waage, 1979; McNair, 1982; Godfray, 1994;
Wajnberg, 2006). Such an assumption is obviously unrealistic
and the underlying proximate mechanisms used by foraging
animals to reach optimal patch time strategies are not always
known (Godfray, 1994; Wajnberg et al., 1999, 2000; van Alphen
et al., 2003; Wajnberg, 2006). This is how simple patch leaving
rules, so-called rules of thumb, were initially proposed by several
authors. Three simple rules were successively proposed: the
forager should leave the patch after (1) finding and attacking a
fixed number of hosts (Gibb, 1962), (2) a fixed time has elapsed
(Krebs, 1973), or (3) no hosts have been found for a fixed amount
of time (fixed giving-up time; Hassell and May, 1974, Murdoch
and Oaten, 1975). Some of these rules, when adopted by a forager,
lead to patch residence times that closely approximated optimal
strategies (see Wajnberg, 2006 for a review). Waage (1979), who
performed some empirical work on the parasitic wasp Nemeritis

canescens (Gravenhorst), proposed a more elaborate process. He
defined a new class of processes that is both motivational and
mechanistic; which is based on a latent variable called motivation
that the author interpreted as the tendency to stay in the patch
and to continue to forage in it. In the Waage (1979) model, the
forager enters the patch with an initial motivation linked with its
expectation of patch profitability. This initial motivation is noted
aP where P is the number of potential hosts in the patch and a a
constant linking the number of hosts to the concentration of
kairomones they produced, a cue that is perceived by the forager.
After entering the patch, the initial motivation monotonously
decreases with time in the absence of any encounter with a host:
a linear decrease of the form –bt is proposed where the constant
b is the rate of decrease and t is the time spent on the patch. Every
host encountered and attacked raises instantaneously the moti-
vation level by a given quantity. Waage (1979) described the
following equation for total patch residence time T:

T ¼ aPþ
X

Ii�rn
� �

=b ð1Þ

where rn is the critical level of responsiveness below which the
patch should be left, and Ii the change in the level of responsive-
ness due to the ith discovery of an item. Deliberately forgetting
additional sophistications, we shall consider I as a constant. The
so-called motivation or tendency to stay, m(t) at any time t after
the parasitoid entered the patch is then given by the equation:

mðtÞ ¼ aP�btþnðtÞI ð2Þ

where n(t) is the number of hosts attacked up to time t.
This equation is easily deduced from the Waage (1979) model
of patch residence time (1) and an example is provided in Fig. 1.

In this model, the patch is left when the motivation m(t) falls
below a given threshold rn that will be set to zero in what follows
without loss of generality. Such a model is called incremental,
since each new host attack increases the motivation level, thereby
increasing the time spent in the patch by a fixed quantity I/b. The
process shows a strong analogy with the concept of the patch
richness estimator proposed by Iwasa et al. (1981). In the model
of Iwasa et al. (1981), the motivational arousals of the Waage
(1979) mechanism would correspond to a sudden increase in the
forager’s estimation of the number of resource items remaining in
the patch.

Several variations of such a mechanistic model were proposed.
The most well-known one was suggested by Driessen et al. (1995)
in which the idea of a monotonous decrease in motivation is
preserved while the animal is foraging on the patch, but the
effects of each host attack is decremental instead of being
incremental. Following Iwasa et al. (1981), such a decremental
effect was demonstrated to be adaptive when all patches contain
a relatively uniform number of hosts. Although based on inverse
mechanisms, both incremental and decremental approaches
belong clearly to the same class of processes. van Alphen (1993)
was the first to propose a model combining both incremental and
decremental processes in which the attack of a healthy host
increases the motivation level, while rejecting a parasitized host
decreases it. Such a combined mechanism was verified for
different parasitoid species (van Alphen, 1993; Wajnberg et al.,
1999, 2000, 2003, see Wajnberg, 2006 for a review). Finally, based
on observations on Leptomastix dactylopii, Pierre et al. (2003)
proposed to replace the monotonous decrease in forager’s moti-
vation to remain on the patch by a logarithmic decay over time.

Unfortunately, the motivation level corresponds to a latent
variable and, as such, can only be appreciated through its indirect
effects on the time spent on a patch. Therefore, identifying
incremental/decremental effects implies that one must record
both the total time spent on a patch and the set of behavioral
events occurring in it, e.g., the successive times of encounters
with hosts. The analysis of such survival data, eventually with
time-dependant covariates (see Wajnberg, 2006 for a review) can
be performed with a Cox (1972) regression analysis. This analysis
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was shown to be very efficient and is now widely used (Haccou
et al., 1991; van Alphen, 1993; Hemerik et al., 1993; Vos et al.,
1998; Driessen and Bernstein, 1999; Wajnberg et al., 1999, 2000,
2003; van Alphen et al., 2003; Wajnberg, 2006, 2012). In this
paper, we show that the deterministic shape of the mechanistic,
motivational model initially proposed by Waage (1979), and of
the subsequent ones, can raise several methodological problems.
We address these different problems and propose a fully stochas-
tic version of the Waage (1979) model that describes more
accurately patch time allocation and patch-leaving decision rules
used by animal foragers. We finally propose a statistical method
to adjust such a stochastic patch time allocation model to data
collected experimentally.
2. Discrepancies between the Waage (1979) model and the
Cox regression analysis

2.1. Evenly distributed patch leaving events

The basic feature of the Waage (1979) model is deterministic.
The only random part arises from the discoveries of hosts in the
patch. Such a random component may be considered as a Poisson
process with constant intensity (i.e., very large patches, negligible
depletion) or of decreasing intensity (i.e., with depletion). Hence,
conditionally to a given set of host discoveries, the time spent in
the patch is fixed and can be easily obtained using the following
equations:

If no host is found:

t0 ¼
aP

b
ð3Þ

If n hosts are found:

tn ¼
1

b
ðaPþnIÞ ð4Þ

According to this simple model, if no host is found the
distribution of the patch residence times is a Dirac. This means
that residence times end at t0 with probability 1 as defined in (3).
If a random number of n hosts are found, the distribution is the
product of a ‘‘Dirac comb’’ by a discrete distribution that may be
derived analytically (but this will not be developed here). Fig. 2
gives an example of such a distribution. As far as we know, such
distributions, or any approaching distributions, were never men-
tioned in the literature nor observed in real animal experiments.
Fig. 2. Probability distribution of patch residence times in the Waage (1979)

model. If host encounters follow a Poisson process, the residence times should be

distributed as a ‘‘Dirac comb’’. Departure can only occur at evenly distributed

times spaced by a length of I/b. Departures from the patch occur exactly at times

t0, t1,y,tn with probabilities given by the vertical axes.
2.2. Identifiability

Consider the two cases where n¼0 and n¼1 for two different
individuals. Eqs. (3) and (4) provide the expected patch residence
time for these two individuals. Therefore, there are only
two independent equations to estimate three parameters: aP

(considered as a single parameter), b and I. This generalizes
obviously when n41, showing that the model is not estimable.
One of its three parameters must be set as a scaling factor, b¼1
for instance.

2.3. Lack of stochasticity: between and within individual variation

The only source of stochasticity in the Waage (1979) model
lies in the random discovery and attacks of the hosts. The same
sequence of host attacks is supposed to produce the same time
departures. In the true world, however, under identical condi-
tions, individuals generally differ in their state parameters aP,
I and b. How should the three parameters vary from one patch to
another in the life of a single individual and how should they vary
between individuals? These problems are different, and this
probably explains why no attempt has been made to estimate
directly the parameters of a Waage (1979) model from experi-
mental data. Obviously, some source of stochasticity is needed.

2.4. No link with the Cox proportional hazards model

2.4.1. A shift in the hazard rate and not a proportional variation

Since residence times are usually analyzed with Cox’s regres-
sion models (Wajnberg, 2006), through the use of the hazard rates
function which corresponds to the ratio of the probability density
function of the residence times to the survivor function at time t

(see Haccou and Meelis, 1992; Collett, 1994; Kalbfleisch and
Prentice, 2002; Zens and Peart, 2003), it would be useful to
interpret the Waage (1979) model in terms of hazard rates and
to find out what should be the hazard rate function with or
without some random variation in the model’s parameters. In the
case where no host is encountered and without any random
variation, the time spent in the patch by a forager is fixed and
given by Eq. (3) above. The probability density function of patch
residence times is then a Dirac distribution d(t�aP/b) as we have
seen before (see Fig. 3e). The corresponding cumulative distribu-
tion function is thus a Heaviside function switching from 0 to 1 at
t¼aP/b. The survivor function S(t), is thus the complementary
Heaviside function switching from 1 to 0 at the same time
coordinate (Fig. 3c). The hazard rate function is null for every
toaP/b, infinite for t0¼aP/b, null again for aP/boto(aPþ I)/b and
undefined for t4(aPþ I)/b. When two or more host encounters
occur, the hazard rate function is a Dirac comb (Fig. 2) and the
survivor function becomes a weighted sum of complementary
Heaviside functions. The hazard rate function can be used as a
measure of the tendency of the parasitoid to leave the patch. This
point contrasts slightly with Waage (1979), and separates two
concepts: the motivation to stay on the patch, which corresponds
to the responsiveness in Waage (1979), and the tendency to leave
it which is null until the motivation falls to zero. Under the Waage
(1979) model, it seems perfectly correct to say that the tendency
to leave the patch is null until the animal really leaves it. The
motivation, on the other hand, is the latent variable which
triggers the tendency to leave.

2.4.2. Introducing a normal random noise in Waage’s model

Let us introduce a random component in the Waage (1979)
model by assuming a normal distribution for the ratio aP/b, and
rescaling the time in such a way that t0¼0 and the variance in



Fig. 3. Graphical representation of the Waage (1979) processes (a and b) with the corresponding survivor functions (c and d) and probability density functions (e and f) in

the hypothesis of no host being attacked (left column) or of either zero or one host randomly attacked (right column). Without any attack, the departure time is strictly

equal to t0 (a). With zero or one attack, the departure time can take only two values t0 and t1, separated between each other by I/b (b). Correspondingly, without any attack,

the survivor function is the complementary Heaviside function, switching from 1 to 0 at t0 (c). With zero or one attack, the survivor function switches at t0 from 1 to the

probability of no attack since t0 and then to zero at t1 (d). Panels (e) and (f) are attempts to represent the corresponding probability density functions, respectively

consisting in a single impulse when no attack occurs before time t0 and of two impulses if one attack occurs.
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patch residence time is 1. Doing this, and considering a situation
in which no hosts are encountered, the hazard rate function
simplifies into:

h0ðtÞ ¼
f ðtÞ

1�FðtÞ
¼

exp ð�ðt2=2ÞÞR þ1
t exp ð�ðs2=2ÞÞds

ð5Þ

which plays the role of the ‘‘baseline hazard function’’ in propor-
tional hazards models.

Let us now assume that each encounter with a suitable host
leads to a fixed increment I of the tendency to stay. Then, each
host encounter results in a simple translation to the right of the
hazard function h(t) by a factor of I/b. The corresponding density,
log-survivor and hazard rate functions are given in Fig. 4a, b and c,
respectively. Driessen and Bernstein (1999) and Tenhumberg
et al. (2001a) showed two examples where similar albeit different
survivor functions were proposed.

The general form of the a Cox (1972) regression model, also
called a proportional hazards model (Collett, 1994; Kalbfleisch
and Prentice, 2002), is:

hðtÞ ¼ h0ðtÞexp
X

bizi

� �
ð6Þ

where h(t) is the hazard rate function, the zi are explanatory
covariates, either quantitative or qualitative (factor levels), and
the bi are regression coefficients estimated from the data and
affecting the baseline hazard rate h0(t).

Starting from (5), we rescale it in such a way that

t-T�
aP

b
: ð7Þ

The effect of a single host encounter is then to delay the patch
residence time by a time lag of I/b, leading to the computation of
the corresponding hazard rate function as follows:

After one host encounter, the mean departure time is

T�
aP

b
¼

I

b
ð8Þ

Then, using the transformation (7),

h1ðtÞ ¼
exp½ð1=2Þðt�ðI=bÞÞ2�R þ1

t�ðI=bÞ exp½ð1=2Þðs�ðI=bÞÞ2�ds
ð9Þ

Expression (9) is obviously the translation of expression (5) by
a quantity I/b. h1(t) cannot be a proportional transformation of
expression (5) (Fig. 4a). This results from the fact that a Cox
regression analysis and the Waage (1979) model are not based on
the same theoretical framework. In the former, the effect of an
encounter with a host is additive on a mechanistic and hypothe-
tical state variable, while the latter is multiplicative on a stochas-
tic variable, the giving up rate. This point was already pointed out



Fig. 4. Probability density functions (a), log-survivor functions (b) and hazard rate

functions (c) of patch residence times theoretically obtained by introducing a

random normal variation in aP/b in the Waage (1979) model. In each graph, the

curve on the left represents the function obtained without host encounter, the

curve on the right represents the function obtained with one host encounter. Axis

scales are arbitrary.
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by Driessen and Bernstein (1999), Wajnberg et al. (2000),
Tenhumberg et al. (2001b) and Wajnberg (2012) who built
simulation models of patch-leaving decision rules directly on
the Cox hypotheses and not on the basis of Waage (1979)-like
motivational processes. However, Cox regression analysis has
proved to be efficient in estimating incremental or decremental
effects on the patch residence time and, by way of consequence,
has been considered as a support to motivational models like the
one proposed by Waage (1979).

2.5. The relationship between Waage’s increments and Cox

proportional hazard regression coefficients cannot be linear

2.5.1. General relationship

Providing that the proportional hazard framework holds, what
should be the relationship between the regression parameters bis
of the Cox model and the increment I in the Waage (1979) model?
Suppose that a set of data containing distinct observations with 0,
1,y,n host attacks is analyzed by means of a Cox’s regression
model, and let b be the effect of every single host attack in such a
model. Reasoning by identification, we obtain the relationship:

I¼ b expðbÞ
Z 1

0
th0ðtÞ½S0ðtÞ�

expðbÞdt�aP ð10Þ

(See Appendix A for a proof).
In this equation, both the baseline survivor function S0(t) and

the baseline hazard function h0(t) remain unspecified.
2.5.2. Particular case: exponential distribution

In the particular case where these two functions correspond
to an exponential distribution of the patch residence time,
S0(t)¼exp(�mt) and h0(t)¼m for all t. Thus, Eq. (10) reduces to:

I

b
¼

1

m exp ðbÞ
�

aP

b
ð11Þ

The link between the b estimates of the Cox’s regression model
and the parameters of the Waage (1979) model should thus be:

b¼ ln
b

m�lnðIþaPÞ ð12Þ

Even in this simple case, the relationship between b and I,
although monotonous, is not linearly decreasing but has a
logarithmic shape. Such considerations as well as the examination
of a substantial number of datasets led us to propose an alter-
native model replacing the Waage (1979) model, taking care of
keeping its best feature, i.e., the idea of an incremental or
decremental process during foraging bouts.
3. A stochastic model

3.1. Description of the model

Let us again consider the motivation of the Waage (1979)
model as a hidden random variable, decreasing over time, but
with a random intercept aP and a random slope b. Stochasticity
occurs both between and within individuals for each new fora-
ging sequence. The result is that the time when the decision to
leave the patch is reached becomes also a random variable with
some density distribution f(t). Each motivation change at the time
when hosts are encountered translates the mean of the distribu-
tion to the right or to the left in the incremental or decremental
case, respectively. However, there is at least one distribution for
which the translation of the mean results in a constant modifica-
tion of the hazard rate, i.e., the exponential distribution. Indeed,
its expected value is the inverse of the hazard rate, so the effect of
an encounter with a host is thus to increase or decrease the
hazard rate, and thus to decrease or increase the mean residence
time on the patch. What we observe is the tendency to leave the
patch, measured by a hazard rate at a population level. When no
hosts are discovered, the hazard rate remains constant, meaning
that the forager can leave the patch at any time, although its
hidden motivation to forage in the current patch decreases. As a
consequence, the accurate time of patch departure is no longer a
constant but a random variable, exponentially distributed (this is
a well known property: a constant hazard rate results in an
exponential distribution). If we again suppose that each resource
item discovered changes suddenly the hazard rate, the global
survivor function will be a piecewise exponential with different
coefficients. The probability density function of the residence
time at time t, conditionally to the events of encounters, corre-
sponds to an exponential distribution with upward or downward
jumps in the incremental or the decremental case, respectively.
Then, such a conditional density function has dynamics that
appear to be very similar to Waage (1979) and Iwasa et al.
(1981) functions.

The patch-leaving model we propose, that can overcome the
difficulties inherent to the deterministic approach initially pro-
posed by Waage (1979), used the following approach: Once a
foraging animal enters a patch, its foraging time X0 is exponen-
tially distributed with a constant hazard rate a0(a040). Each time
a host is encountered, its current hazard rate is increased or
decreased. Let us denote ai the hazard rate obtained after i

previous host attacks and Xi the random variable that results
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from an exponential distribution with hazard rate ai. In the next
steps, we will consider the series a0, a1,y,ai, y as the hazard
rates obtained after 0, 1,y,i,y host attacks. Attacking hosts
constitutes a Poisson process of rate l (thus the attack times are
exponentially distributed with hazard rate l). For a mathematical
tractability, this rate is supposed to be constant in time and
independent of i and t (i.e., very large patches or no depletion). Let
us denote {Ti} the sequence of time lags between successive
resource encounters. The Ti are therefore the intervals between
two successive attack times.

We now compute the probability for a forager to be still on the
patch at time t, whatever the number of resource items found.
The fact that the forager is still on the patch at time t and knowing
that it already attacked 0, 1, i, hosts, i varying from 0 to þN, is
expressed in the following equation:

ðX4tÞ ¼ ½ðX04tÞ \ ðX0oT1Þ� [
1
i ¼ 1

n
ðT1þ � � � þTi

þXi4tÞ \i�1
j ¼ 0 ðXjZTjþ1Þ \ ðXioTiþ1Þ

o
ð13Þ

where X denotes the random total time spent in the patch.
Hence, the probability of the forager to be still on the patch at

time t is:

PðX4tÞ ¼ PðX04t,X0oT1Þ

þ
X1
i ¼ 1

P ðT1þ � � � þTiþXi4tÞ \i�1
j ¼ 0 ðXjZTjþ1Þ \ ðXioTiþ1Þ

n o
ð14Þ

where commas stand for the intersection (logical ‘‘and’’). Evalua-
tion of this expression leads to a repeated integral which is fully
developed in Appendix B. The final result for the survival function
is an infinite weighted sum of exponentials. This sum is the
survivor function of the process and converges in i for any t:

PðX4tÞ ¼ SðtÞ ¼
X1
i ¼ 0

Xi

j ¼ 0

aj
ie
�ðlþajÞt ð15Þ

where the ai
j are coefficients which can be estimated by recur-

rence as

aj
i ¼
ð�1Þj

mi

Pj

k¼ 1

ka i

1

mi�mk

ð16Þ

with mZ¼lþaZ, Z standing for any index, i, k, etc. Appendix B
gives the proofs of (15) and (16). Let us note that this survivor
function is unconditional, providing that the series of ai is known.
It is the survivor function expected if only the patch leaving time
is recorded (the times of successive encounters are not). The
practical estimation of the ai requires the recording of the rank i

of each ai and the times of attacks, as will be shown below.

3.2. Estimation

Data needed to estimate the model consists of a set of patch
residence times associated with the record of the successive host
attacks. Two approaches can be proposed to estimate the para-
meter of the stochastic model we are proposing, either a para-
metric one based on a likelihood function obtained from (15) and
(16), or a semi-parametric one by fitting a classical Cox propor-
tional hazards model. The first approach allows estimating
directly the ai but is based on the strong assumption that the
hazard function remains constant (i.e., exponential distribution
of patch residence times). The second one leads to estimating the
ais through the Cox regression coefficients bi. Both results should
be similar if the distribution of the patch residence time is
exponential.
3.2.1. Parametric estimation

We need experimental data in which residence times as well
as the successive times of encounters with hosts are recorded for
a set of individuals. For the sake of simplicity, we shall not
consider the case in which some total residence times are
censored (see Bressers et al., 1991; Haccou and Meelis, 1992 for
a discussion on censoring). For each individual, the patch is
considered to be entered at time 0, then a first host is encoun-
tered at time t1, a second at time t2, and so on until time tm when
the animal encounters the last host before leaving the patch at
time TZtm. These events correspond to a series of renewal
intervals. Each interval is a survival data beginning at ti and
censored by the next encounter event at tiþ1. Only the last
interval [tm, T] is uncensored. At each renewal time, the survival
probabilities between ti and tiþ1 are conditioned by the survival
of the process at time ti. Under the assumption that the ith
interval is a survival process of hazard rate ai the likelihood of a
series of events is therefore:

Vðt1,. . .,ti,. . .,tm,. . .,T9a0,a1,. . .Þ ¼ amþ1e�amþ 1ðT�tmÞ
Ym
j ¼ 0

e�ajdj ð17Þ

and the log-likelihood is thus:

lnV ¼ lnamþ1�amþ1ðT�tmÞ�
Xm

j ¼ 0

ajdj ð18Þ

where dj¼tj�tj�1

Then, for n individuals observed:

lnV ¼
Xn

i ¼ 1

½lnamiþ1�amiþ1ðTi�tmi
Þ��

Xn

i ¼ 1

Xmi

j ¼ 0

ajdij ð19Þ

Expression (19) is easier to handle if the number of host
encounters m is considered as being an index varying from 0 to M

(maximum number of encounters observed), collecting the sum
of individuals having experienced no encounter with hosts, those
who encountered only one host, two hosts, etc. Expression (19)
can then be changed by denoting by i (i¼1,y,mi), the rank of the
ith encounters in the sequence and by j (j¼1,y,ri), the jth
individual that met exactly mi hosts. Doing this, the likelihood
function becomes:

Vðt1j,. . .,tij,. . .,tmj,. . .,Tj9a0,a1,. . .Þ ¼
YM

m ¼ 0

Yrm

j ¼ 1

amþ1

e�amþ 1ðTmj�tmjÞ
Ym
i ¼ 1

e�aidmij ð20Þ

The log-likelihood follows straightforwardly, and through
derivation with respect to the coefficients a and equating to zero,
the maximum likelihood estimators lead to:

âi ¼
riPri

j ¼ 1ðTij�tijÞþ
PM

m ¼ iþ1

Prm

j ¼ 1 dmij

ð21Þ

for any ioM and

âM ¼
rMPrM

j ¼ 1ðTiMj�tiMjÞ
¼

1

diM

ð22Þ

for the last term corresponding to exactly M encounters.
Obviously, one recognizes the classical estimator of a constant
hazard rate in the case of an exponential model while in (21) one
recognizes the hazard rate between two successive events given
in the parametric exponential model with time-dependent events
(Collett, 1994; Kalbfleisch and Prentice, 2002).

An asymptotic estimation of the variance of these coefficients
is also easily obtained by computing the inverse of the Hessian
of the log-likelihood function (Fisher’s information matrix)
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leading to:

VarðâiÞ ¼
a2

i

ri
ð23Þ

An R (R development core team, 2011) function was written to
calculate the results and can be obtained from the authors.

3.2.2. Semi-parametric estimation

Alternatively, standard statistical packages fitting a Cox pro-
portional hazards model can be used to compute a semi-
parametric estimation on the same data. For this, the number of
encounters observed for each individual is treated as a time-
dependent covariate (see Collett, 1994; Therneau and Grambsch,
2000; Kalbfleisch and Prentice, 2002). In this case, the baseline
hazard rate does not need to be modeled and, if the basic process
is exponential, the coefficients b are linked to the coefficients a
defined in (22) by the relation:

exp ðbiÞ ¼
ai

a0
3bi ¼ lnai�lna0 ð24Þ

This relationship implies that the coefficients ais can be
estimated directly from the estimations of the bis of a Cox’s
model:

ai ¼ a0exp bi ð25Þ

Then, a separate estimation of a0 is needed through a standard
estimation of the baseline hazard function by fitting a Cox
regression model to the data.
4. Examples of estimations of the stochastic model

The proposed stochastic model for patch residence time of a
foraging animal was estimated on two different data sets. The first
one consists of observations realized on the egg parasitoid Tricho-

gramma brassicae (Hymenoptera; Trichogrammatidae) placed on
artificial patches of nine host eggs (i.e., eggs of the factitious host
Ephestia kuehniella, Lepidoptera, Pyralidae). The experimental obser-
vations are those of Wajnberg et al. (2000). The second was provided
by J. van Baaren and M.-H. Guislain (unpublished data) and comes
from experiments done on the aphid parasitoid Aphidius picipes

exploiting patches of the aphid Sitobion avenae F. on wheat leaves.
In both cases, we first fitted an exponential distribution to the

survivor functions on individuals that did not meet any host.
According to the Waage (1979) model, all these individuals
should leave the patch almost at the same time and their
corresponding survivor function should vary suddenly from 1 to
zero if the model incorporates no random variation (see Fig. 3c). If
some slight variation exists, such a function should look like an
inverse sigmoid, and the log-survivor function should tend to
�N (see Fig. 4b). However, as can been seen in Fig. 5a and b, in
both cases the survivor function looks like an exponential dis-
tribution especially in A. picipes (r2

¼0.991, df¼61, Fig. 5b) leading
to a better fit than in the case of T. brassicae (r2

¼0.797, df¼64,
Fig. 5a). This supports the idea of a stochastic survival process
with a constant hazard rate rather than a deterministic process
with a fixed departure time.

Fig. 5c and d shows the parametric and semi-parametric
estimations of the stochastic model presented above in the case
of T. brassicae and A. picipes, respectively. In these graphs, the ais
reveal an incremental or a decremental effect when they are
lower or greater than the previous one, respectively. In the case of
T. brassicae, the ais decrease strongly from the first host encoun-
tered (incremental effect of the first host encounter). Another, less
important decrease is observed with the second host encounter
and then the ais tend to increase from the third to the
9th encounter, revealing a switch from an incremental to a
decremental effect, as was observed by the authors (Wajnberg
et al., 2000). Both the parametric and semi-parametric estima-
tions look similar until the 5th host encounter, and then diverge
progressively despite all estimates remaining within the confi-
dence limits of the parametric estimates of the model presented
here.

The same feature is obtained with the A. picipes data (Fig. 5c)
where the pattern looks more complicated. A slightly incremental
effect (i.e., decreasing ais) is obtained for the first and the second
host encounter, followed by a strong decremental effect for the
third encounter, and a slightly decreasing mechanism thereafter
until the 10th encounter. The agreement between the parametric
and semi-parametric estimations of the model is even better than
in the T. brassicae case, except after 14 encounters, but in this case
this estimation relies on a very small number of individuals, those
who were still in the patch after 14 encounters (n¼5).
5. Conclusion

The present work can be viewed as a reappraisal of the Waage
(1979) model since it incorporates a fundamental stochasticity in
the patch-leaving decision process of foragers. We conserved
what has proved to fit well to a large number of datasets found
in literature, i.e., the hypothesis of incremental or decremental
processes acting on a latent variable, the so-called motivation or
tendency to stay in the patch. Contrasting with the original
Waage (1979) model, no particular change of this tendency in
time is assumed. This results in residence times being exponen-
tially distributed. The two sets of experimental data presented
here support this view since the survivor functions when no hosts
are found fit well to exponential distributions and not to dis-
tributions characterized by a sudden peak of departures from the
patch, as expected from a simple Waage (1979) process. The
advantage of the stochastic model presented here is its coherence
with the Cox’s proportional hazards model commonly used for
estimating incremental or decremental mechanisms in patch-
leaving decision rules (Wajnberg, 2006).

However, our approach pays cost for its simplicity. The Waage
(1979) model is easier to understand and to manage than its
stochastic counterpart. Furthermore, it incorporates a feature
commonly adopted by those working on animal behavior, i.e., a
decline in motivation through habituation. Such a feature expli-
citly disappears in the stochastic version presented here. The
motivation to forage is completely hidden, and only the tendency
to leave the patch is estimable as a hazard rate. As a consequence,
our model becomes fully relevant within the framework of
survival analysis through the fit of a Cox regression model.

The mathematical analysis of the stochastic process presented
in this paper leads to a quasi closed form in the case where the
distribution of patch residence times is exponential. However, the
same ideas could be applied with different survival processes
(e.g., a Weibull distribution) but would probably become math-
ematically intractable, the hazard rates between two encounters
with hosts being strongly time-dependent when any other dis-
tribution than the exponential is used. However, such models
would remain fully accessible to the survival data analysis. In this
case, it should be noted that the semi-parametric and parametric
estimations will in general not coincide.

The main feature of our approach is that the set of para-
meters used reduces to successive hazard rates in a fully estim-
able way, leading to an accurate estimation of the effects every
encounter with resource items might have on the patch-leaving
decision of a forager. More work is now needed to find how
such a stochastic, and thus imperfect decision process can
lead animals to reach an optimum. The key of the answer is



Fig. 5. Upper part: Observed (solid line) and fitted exponential distribution (dashed line) of the log-survivor functions for females of Trichogramma brassicae (a) and

Aphidius picipes (b) that did not meet any host during the observation. Lower part: results of the stochastic model fitted on T. brassicae (c) and A. picipes (d) datasets

compared to a Cox’s regression fitting. Solid lineþopen circles: parametric estimation of the coefficients ai (7 confidence interval) (hazard rate after i encounters); dashed

lineþclosed circles: semi-parametric estimations of the a from the b coefficients of the Cox’s proportional hazards model. In the case of A. picipes some encounters were

never observed (4, 6, 7, 8, 9 and 11) and therefore, their effect was not estimable.
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probably the tuning of risk sensitivity in a partly unpredictable
environment.
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Appendix A. General relationship between the regression
coefficient b of a Cox’s proportional hazards model and the
increments I of the Waage (1979) model

We consider that the assumption of proportional hazard rates
holds. In the case of a Cox’s regression analysis, we consider that
each host encounter has the same effect on the hazard rate.
Therefore, the effect of n host discoveries on the hazard rate
function is:

hnðtÞ ¼ h0ðtÞexp ðnbÞ ðA:1Þ
or, for the survivor function:

SnðtÞ ¼ ½S0ðtÞ�
expðnbÞ ðA:2Þ

From this classical result (Collett, 1994; Kalbfleisch and
Prentice, 2002) it follows that the probability density function
of the patch residence times is:

f nðtÞ ¼ hnðtÞSnðtÞ ¼ h0ðtÞexp ðnbÞ½S0ðtÞ�
expðnbÞ ðA:3Þ

Assuming now that the Waage (1979) process holds, at the
price of adding some random noise to the effects. It is reasonable
to assume that the expected time spent on the patch after n hosts
are attacked is equal to the mean of the density function defined
in (A.3). Therefore, when only one host is encountered:

E t1f g ¼

Z 1
0

tf 1ðtÞdt ðA:4Þ

And, after n encounters:

E tnf g ¼

Z 1
0

tf nðtÞdt ðA:5Þ

In the case of a single encounter with a host and taking the
Waage (1979) result for the left side of this equation, replacing
expression (A.3) in the right side leads to:

1

b
ðaPþ IÞ ¼ expðbÞ

Z 1
0

th0ðtÞ½S0ðtÞ�
expðbÞdt ðA:6Þ
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or

I¼ b expðbÞ
Z 1

0
th0ðtÞ½S0ðtÞ�

expðbÞdt�aP ðA:7Þ

as stated in Eq. (10) in the main text.
Appendix B. Derivation of the survivor function of the
stochastic model

We searched the survivor function for the times passed in a
patch, when resources were discovered according to a Poisson
process of rate l, and proved Eq. (15). Here and in what follows,
lower case letters indicate possible values of random variables
that are noted in upper case letters. The survivor function at time
t is the infinite sum of the probabilities of being still in the patch
at time t after having found i hosts, i varying from 0 to þN. To
achieve this goal, let us set up the first terms of the series and try
to find a recurrence equation giving the ith term.

Consider first the probability to remain on the patch at time t

when no host is found:

P0ðtÞ ¼ PðX04t,X0oT1Þ ðB:1Þ

and second the probability to remain in the patch at time t after
having found exactly i hosts:

PiðtÞ ¼ PðT1þT2þ � � � þTiþXi4t,X0ZT1, � � � ,Xi�1ZTi,XioTiþ1Þ

f or iZ1 ðB:2Þ

X0 and T1 are stochastically independent and their joint
density is lexpð�lt1Þa0expð�a0x0Þ. Let us define the new random
variables Y1¼T1�X0 and Y2¼X0. Their joint density is
la0expð�ly1Þexp½�ða0þlÞy2� and thus:

P0 ¼ la0

Z
y1 40

Z
y2 4 t

expð�ly1Þexp½�ða0þlÞy2�dy2

" #
dy1 ðB:3Þ

which solves into:

P0ðtÞ ¼ a0
exp½�ða0þlÞt�

a0þl
ðB:4Þ

Let us proceed identically for iZ1. The random variables
X0,y,Xi; T1,y,Tiþ1 are independent and their joint density
jðx0,. . .,xi; t1,. . .,tiþ1Þ is the product of their marginal densities:

jðx0,. . .,xi; t1,. . .,tiþ1Þ

¼ a0exp ð�a0x0Þl
iþ1

Yi

j ¼ 1

ajexpð�ajxjÞexpð�ltjÞ

0
@

1
Aexpð�ltiþ1Þ

ðB:5Þ

for xjZ0, j¼0, y, i and tkZ0, k¼1,y,iþ1, jðx0,. . .,xi;
t1,. . .,tiþ1Þ ¼ 0 otherwise.

Hence

PiðtÞ ¼

Z
Di

t

jðx0,. . .,xi; t1,. . .,tiþ1Þdx0 � � � dxidt1 � � �dtiþ1 ðB:6Þ

where Di
t is the domain defined as

Di
t ¼ t1þt2þ � � � þtiþxiZt; x0Zt1; � � � ; xi�1Zti; xiotiþ1

� �
ðB:7Þ

To handle this integral we define, as previously, the new
variables:

Y1 ¼ X0�T1,:::,Yi ¼ Xi�1�Ti ðB:8Þ

Eq. (B.6) then becomes:

PiðtÞ ¼

Z
Di

t

aiexpð�aixiÞl
iþ1

Yi

j ¼ 1

exp½�ðlþajÞtj�expð

�ltjþ1Þdx0 � � � dxidt1 � � �dtiþ1: ðB:9Þ
As we integrate any xi between 0 and t�ðt1þ � � � þtiÞ, the
evaluation of Pi(t) reduces to:

PiðtÞ ¼ liai

Z
t1þ���þ tiþ xi Z t

Yi�1

j ¼ 0

exp ð�mjtjþ1Þexp ð�mjxiÞdt1 � � � dtidxi

ðB:10Þ

with mZ¼lþaZ, Z standing for i, j or any necessary index, or:

PiðtÞ ¼ PðAiÞ�l
iai

Z
t1þ���þ tiþ xi o t

Yi�1

j ¼ 0

exp ð�mjtjþ1Þ

exp ð�mjxiÞdt1 � � �dtidxi ðB:11Þ

where P(Ai) is the probability of the event ‘‘the animal leaves the
patch after exactly encountering i resource items’’. Such a prob-
ability is equal to:

PðAiÞ ¼ liai

Z þ1
0
� � �

Z þ1
0

Yi�1

j ¼ 0

exp ð�mjtjþ1Þexp ð�mjxiÞdt1 � � � dtidxi

ðB:12Þ

which leads, by successive integration, to the simple expression:

PðAiÞ ¼
liaiQi
j ¼ 0 mj

ðB:13Þ

The repeated integral in (B.12) is easily evaluated recursively
as suggested in Feller (1966). The result is an appropriate linear
combination of exp(�mjt), (j¼0,y,i).whose coefficients must be
determined. Let us note:

Sjðm1, � � � ,mj; xÞ ¼

Z
t1þ���þ tj o¼ x

Yj

i ¼ 1

expð�mitiÞdt1 � � �dtj ðB:14Þ

the integral to be evaluated. Finally, we find the recurrence
equation:

Sjðm1, � � � ,mj; xÞ ¼
1

mj

Sj�1ðm1, � � � ,mj�1; xÞ

�expð�mjxÞSj�1ðm1�mj, � � � ,mj�1�mj; xÞ ðB:15Þ

The survivor function P(XZt) is obtained by summing the
Pi(t): PðXZtÞ ¼Sþ1i ¼ 0PiðtÞ, the appropriate infinite linear combina-
tion of exp(�mjt), (j¼0,y,þN).

All the terms in this series are positive (i.e., probabilities) and
the entire series is bound by 1. We can thus obtain an approx-
imation as good as needed of P(XZt) by summing a finite number
of the first terms of the series.

A simplification
Eqs. (B.13) and (B.15) provide a recursive method for comput-

ing the desired survivor function but something simpler and
numerically safer can be achieved. Resuming from (B.15), let us
note:

S n

j�1ðm1,m2,. . .,mj�1,mj; xÞ ¼ Sj�1ðm1�mj,m2�mj,. . .,mj�1�mj; xÞ ðB:16Þ

Similarly, we will note anj
i the coefficients obtained by repla-

cing any mZ by mZ�mjþ1 in the corresponding aj
i, Z representing,

as previously, any necessary index i or j.
From what precedes, Sjðm1,. . .,mj; xÞ has the form:

Sj ¼ aj
0þ

Xj

i ¼ 1

aj
iexpð�mixÞ: ðB:17Þ

It is quite straightforward that a0
0 ¼ 1 and an0

0 ¼ 1. Then,

Sj�1 ¼ aj�1
0 þ

Pj�1
i ¼ 1 aj�1

i expð�mixÞ

Sn

j�1 ¼ anj�1
0 þ

Pj�1
i ¼ 1 anj�1

i exp½�ðmi�mjÞx�

8<
: ðB:18Þ
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Hence, from (B.17):

Sj ¼
1

mj

aj�1
0 þ

Xj�1

i ¼ 1
aj�1

i expð�mjxÞ
� �n

�expð�mjxÞ anj�1
0 þ

Xj�1

i ¼ 1
anj�1

i exp½�ðmi�mjÞx�
� �o

ðB:19Þ

Sj ¼
1

mj

aj�1
0 þ

Xj�1

i ¼ 1
ðaj�1

i �anj�1
i Þexpð�mixÞ�anj�1

0 expð�mjxÞ
n o

ðB:20Þ

And by identification:

aj
0 ¼

1
mj

aj�1
0 ) aj

0 ¼Pj
k ¼ 1

1
mk

aj
i ¼

1
mj
ðaj�1

i �anj�1
i Þ

aj
j ¼�

1
mj

anj�1
0

8>>>><
>>>>:

ðB:21Þ

Conjecture. the successive development of (B.21) on S1, S2, and S3

suggests that the general term aj
i of the coefficients, for ia0 is

given by:

aj
i ¼
ð�1Þj

mi

Yj

k¼ 1

ka i

1

mi�mk

ðB:22Þ

Proof. let us develop the second line of (B.21), replacing the
coefficients by their expression given in (B.22). We obtain:

aj
i ¼

1

mj

ð�1Þj�1

mi

Yj�1

k¼ 1

ka i

1

mi�mk

�
ð�1Þj�1

mi�mj

Yj�1

k¼ 1

ka i

1

ðmi�mjÞ�ðmk�mjÞ

0
BB@

1
CCA

ðB:23Þ

an expression that simplifies in (B.22) which completes the proof.
All coefficients are then known and easily explicitly calculable.
The algorithm of evaluation of the integral is then straightfor-
ward: define a precision level e, evaluate the successive terms
Pi(t) at time t, beginning by 0, and sum each new term until
Pi(t)re. The algorithm was used successfully to obtain Fig. B.1
representing the survivor function with a decreasing (incremental
Fig. B.1. Log-survivor function of the stochastic process analogous to the Waage

(1979) model for different values of a parameter a governing the modification of

the hazard rate a with each host encountered. The baseline rate is a0, and at the ith

host encounter becomes a0ai. The values of a are indicated on the graph. Values of

a lower than 1 correspond to the incremental model, values of a greater than 1 to

the decremental model. Other parameters: l¼0.05, a0¼0.1.
model) or an increasing (decremental model) set of hazard rates
ai.

Finally, the complete survivor function of Eq. (15) is

SðtÞ ¼ PðX4tÞ ¼
X1
i ¼ 0

Xi

j ¼ 0

ð�1Þj

mi

Yj

k¼ 1

ka i

expð�mjtÞ

mi�mk

ðB:24Þ
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